Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Multivariate curve resolution-based data fusion approaches applied in 1H NMR metabolomic analysis of healthy cohorts

Martínez Bilesio, Andrés RogelioIcon ; Puig Castellví, Francesc; Tauler, Romà; Sciara, Mariela InesIcon ; Fay, Fabián; Rasia, Rodolfo MaximilianoIcon ; Burdisso, PaulaIcon ; Garcia Reiriz, Alejandro GabrielIcon
Fecha de publicación: 06/2024
Editorial: Elsevier Science
Revista: Analytica Chimica Acta
ISSN: 0003-2670
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Química Analítica

Resumen

Background: Metabolomics plays a critical role in deciphering metabolic alterations within individuals, demanding the use of sophisticated analytical methodologies to navigate its intricate complexity. While many studies focus on single biofluid types, simultaneous analysis of multiple matrices enhances understanding of complex biological mechanisms. Consequently, the development of data fusion methods enabling multiblock analysis becomes essential for comprehensive insights into metabolic dynamics.Results: This study introduces a novel guideline for jointly analyzing diverse metabolomic datasets (serum, urine, metadata) with a focus on metabolic differences between groups within a healthy cohort. The guideline presents two fusion strategies, ‘Low-Level data fusion’ (LLDF) and ‘Mid-Level data fusion’ (MLDF), employing a sequential application of Multivariate Curve Resolution with Alternating Least Squares (MCR-ALS), linking the outcomes of successive analyses. MCR-ALS is a versatile method for analyzing mixed data, adaptable at various stages of data processing—encompassing resonance integration, data compression, and exploratory analysis. The LLDF andMLDF strategies were applied to 1H NMR spectral data extracted from urine and serum samples, coupled with biochemical metadata sourced from 145 healthy volunteers.Significance: Both methodologies effectively integrated and analysed multiblock datasets, unveiling the inherent data structure and variables associated with discernible factors among healthy cohorts. While both approaches successfully detected sex-related differences, the MLDF strategy uniquely revealed components linked to age. By applying this analysis, we aim to enhance the interpretation of intricate biological mechanisms and uncover variations that may not be easily discernible through individual data analysis.
Palabras clave: METABOLOMICS , H NMR , DATA FUSION , MCR-ALS
Ver el registro completo
 
Archivos asociados
Tamaño: 6.596Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/266056
URL: https://linkinghub.elsevier.com/retrieve/pii/S0003267024004902
DOI: http://dx.doi.org/10.1016/j.aca.2024.342689
Colecciones
Articulos(IBR)
Articulos de INST.DE BIOLOGIA MOLECULAR Y CELULAR DE ROSARIO
Articulos(IQUIR)
Articulos de INST.DE QUIMICA ROSARIO
Citación
Martínez Bilesio, Andrés Rogelio; Puig Castellví, Francesc; Tauler, Romà; Sciara, Mariela Ines; Fay, Fabián; et al.; Multivariate curve resolution-based data fusion approaches applied in 1H NMR metabolomic analysis of healthy cohorts; Elsevier Science; Analytica Chimica Acta; 1309; 6-2024; 1-12
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES