Mostrar el registro sencillo del ítem

dc.contributor.author
Maryada Maryada  
dc.contributor.author
Soldado Magraner, Saray  
dc.contributor.author
Sorbaro, Martino  
dc.contributor.author
Laje, Rodrigo  
dc.contributor.author
Buonomano, Dean  
dc.contributor.author
Indiveri, Giacomo  
dc.date.available
2025-07-15T09:04:32Z  
dc.date.issued
2025-07  
dc.identifier.citation
Maryada Maryada; Soldado Magraner, Saray; Sorbaro, Martino; Laje, Rodrigo; Buonomano, Dean; et al.; Stable recurrent dynamics in heterogeneous neuromorphic computing systems using excitatory and inhibitory plasticity; Springer; Nature Communications; 16; 1; 7-2025; 1-13  
dc.identifier.issn
2041-1723  
dc.identifier.uri
http://hdl.handle.net/11336/265996  
dc.description.abstract
Many neural computations emerge from self-sustained patterns of activity in recurrent neural circuits, which rely on balanced excitation and inhibition. Neuromorphic electronic circuits represent a promising approach for implementing the brain’s computational primitives. However, achieving the same robustness of biological networks in neuromorphic systems remains a challenge due to the variability in their analog components. Inspired by real cortical networks, we apply a biologically-plausible cross-homeostatic rule to balance neuromorphic implementations of spiking recurrent networks. We demonstrate how this rule can autonomously tune the network to produce robust, self-sustained dynamics in an inhibition-stabilized regime, even in presence of device mismatch. It can implement multiple, co-existing stable memories, with emergent soft-winner-take-all and reproduce the “paradoxical effect” observed in cortical circuits. In addition to validating neuroscience models on a substrate sharing many similar limitations with biological systems, this enables the automatic configuration of ultra-low power, mixed-signal neuromorphic technologies despite the large chip-to-chip variability.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Springer  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/  
dc.subject
NEUROMORPHIC SYSTEMS  
dc.subject
NEUROSCIENCE  
dc.subject
LEARNING ALGORITHMS  
dc.subject
ELECTRONIC ENGINEERING  
dc.subject.classification
Otras Ciencias Físicas  
dc.subject.classification
Ciencias Físicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.subject.classification
Otras Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información  
dc.subject.classification
Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Stable recurrent dynamics in heterogeneous neuromorphic computing systems using excitatory and inhibitory plasticity  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2025-07-14T09:55:31Z  
dc.journal.volume
16  
dc.journal.number
1  
dc.journal.pagination
1-13  
dc.journal.pais
Reino Unido  
dc.description.fil
Fil: Maryada Maryada. Universitat Zurich; Suiza  
dc.description.fil
Fil: Soldado Magraner, Saray. University of California; Estados Unidos  
dc.description.fil
Fil: Sorbaro, Martino. Eidgenossische Technische Hochschule zurich (eth Zurich);  
dc.description.fil
Fil: Laje, Rodrigo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; Argentina  
dc.description.fil
Fil: Buonomano, Dean. University of California; Estados Unidos  
dc.description.fil
Fil: Indiveri, Giacomo. Universitat Zurich; Suiza  
dc.journal.title
Nature Communications  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.nature.com/articles/s41467-025-60697-2  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1038/s41467-025-60697-2