Artículo
Optimal State-Feedback Regulation of the Hydrogen Evolution Reactions
Fecha de publicación:
12/2005
Editorial:
Planta Piloto de Ingeniería Química
Revista:
Latin American Applied Research
ISSN:
0327-0793
e-ISSN:
1851-8796
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
A control strategy is developed in order to keep processes based on the hydrogen evolution reactions (HER) near operational steady states. The problem is treated in the context of Optimal Control for nonlinear systems subject to quadratic cost objectives. The original dynamics is shown to be accurately approximated by a bilinear model without increasing the dimension, so the state variables retain their physical meaning. Finite and infinite horizon optimal control strategies are developed, based on the Hamiltonian formalism, and introducing a novel approach for working on-line with generalized Riccati differential equations and the associated costate dynamics. When there exists a final penalty on the state deviation, then a first order quasi-linear partial differential equation is discovered and solved for the Riccati matrix. The observability problem is also treated, since the natural state (electrode surface coverage) can not be measured continuously. The output variable (current density) is fed into a high-gain nonlinear observer based on Lyapunov´s stability considerations. The whole approach allows for (in general time-dependent) state-feedback control.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(INTEC)
Articulos de INST.DE DES.TECNOL.PARA LA IND.QUIMICA (I)
Articulos de INST.DE DES.TECNOL.PARA LA IND.QUIMICA (I)
Citación
Costanza, Vicente; Optimal State-Feedback Regulation of the Hydrogen Evolution Reactions; Planta Piloto de Ingeniería Química; Latin American Applied Research; 35; 4; 12-2005; 327-335
Compartir