Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Improvement and generalization of ABCD method with Bayesian inference

Alvarez, EzequielIcon ; Da Rold, LeandroIcon ; Szewc, ManuelIcon ; Szynkman, Alejandro AndrésIcon ; Tanco, Santiago AndrésIcon ; Tarutina, TatianaIcon
Fecha de publicación: 07/2024
Editorial: SciPost Foundation
Revista: SciPost Physics Core
e-ISSN: 2666-9366
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Física de Partículas y Campos

Resumen

To find New Physics or to refine our knowledge of the Standard Model at the LHC is an enterprise that involves many factors, such as the capabilities and the performance of the accelerator and detectors, the use and exploitation of the available information, the design of search strategies and observables, as well as the proposal of new models. We focus on the use of the information and pour our effort in re-thinking the usual datadriven ABCD method to improve it and to generalize it using Bayesian Machine Learning techniques and tools. We propose that a dataset consisting of a signal and many backgrounds is well described through a mixture model. Signal, backgrounds and their relative fractions in the sample can be well extracted by exploiting the prior knowledge and the dependence between the different observables at the event-by-event level with Bayesian tools. We show how, in contrast to the ABCD method, one can take advantage of understanding some properties of the different backgrounds and of having more than two independent observables to measure in each event. In addition, instead of regions defined through hard cuts, the Bayesian framework uses the information of continuous distribution to obtain soft-assignments of the events which are statistically more robust. To compare both methods we use a toy problem inspired by p p → hh → b¯bb¯b, selecting a reduced and simplified number of processes and analysing the flavor of the four jets and the invariant mass of the jet-pairs, modeled with simplified distributions. Taking advantage of all this information, and starting from a combination of biased and agnostic priors, leads us to a very good posterior once we use the Bayesian framework to exploit the data and the mutual information of the observables at the event-by-event level. We show how, in this simplified model, the Bayesian framework outperforms the ABCD method sensitivity in obtaining the signal fraction in scenarios with 1% and 0.5% true signal fractions in the dataset. We also show that the method is robust against the absence of signal. We discuss potential prospects for taking this Bayesian data-driven paradigm into more realistic scenarios.
Palabras clave: NEW PHYSICS , BAYESIAN INFERENCE , ABCD METHOD
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 872.8Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution 2.5 Unported (CC BY 2.5)
Identificadores
URI: http://hdl.handle.net/11336/265958
URL: https://scipost.org/10.21468/SciPostPhysCore.7.3.043
DOI: http://dx.doi.org/10.21468/SciPostPhysCore.7.3.043
Colecciones
Articulos (ICIFI)
Articulos de INSTITUTO DE CIENCIAS FISICAS
Articulos(IFLP)
Articulos de INST.DE FISICA LA PLATA
Citación
Alvarez, Ezequiel; Da Rold, Leandro; Szewc, Manuel; Szynkman, Alejandro Andrés; Tanco, Santiago Andrés; et al.; Improvement and generalization of ABCD method with Bayesian inference; SciPost Foundation; SciPost Physics Core; 7; 3; 7-2024; 1-24
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES