Mostrar el registro sencillo del ítem

dc.contributor.author
Manzanares, Lorena  
dc.contributor.author
Spurling, Dahnan  
dc.contributor.author
Szalai, Alan Marcelo  
dc.contributor.author
Schröder, Tim  
dc.contributor.author
Büber, Ece  
dc.contributor.author
Ferrari, Giovanni  
dc.contributor.author
Dagleish, Martin R. J.  
dc.contributor.author
Nicolosi, Valeria  
dc.contributor.author
Tinnefeld, Philip  
dc.date.available
2025-07-14T11:44:18Z  
dc.date.issued
2024-10  
dc.identifier.citation
Manzanares, Lorena; Spurling, Dahnan; Szalai, Alan Marcelo; Schröder, Tim; Büber, Ece; et al.; 2D Titanium Carbide MXene and Single‐Molecule Fluorescence: Distance‐Dependent Nonradiative Energy Transfer and Leaflet‐Resolved Dye Sensing in Lipid Bilayers; Wiley VCH Verlag; Advanced Materials; 36; 49; 10-2024; 1-9  
dc.identifier.issn
0935-9648  
dc.identifier.uri
http://hdl.handle.net/11336/265898  
dc.description.abstract
Despite their growing popularity, many fundamental properties and applications of MXene materials remain underexplored. Here, the nonradiative energy transfer properties of 2D titanium carbide MXene are investigated and their application in single-molecule biosensing is explored for the first time. DNA origami positioners are used for single dye placement immobilized by a specific chemistry based on glycine-MXene interactions, allowing precise control of their orientation on the surface. Each DNA origami structure carries a single dye molecule at predetermined heights. Single-molecule fluorescence confocal microscopy reveals that energy transfer of an organic emitter (ATTO 542) on transparent thin films made of spincast Ti3C2Tx flakes follows a cubic distance dependence, where 50% of energy transfer efficiency is reached at 2.7 nm (d0). MXenes are applied as short-distance spectroscopic nanorulers, determining z distances of dye-labeled supported lipid bilayers fused on MXene’s hydrophilic surface. Hydration layer (2.1 nm) and lipid bilayer thickness (4.5 nm) values that agree with the literature are obtained. These results highlight titanium carbide MXenes as promising substrates for single-molecule biosensing of ultrathin assemblies, owing to their sensitivity near the interface, a distance regime that is typically inaccessible to other energy transfer tools.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Wiley VCH Verlag  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/  
dc.subject
MXENE  
dc.subject
ENERGY TRANSFER  
dc.subject
SINGLE-MOLECULE  
dc.subject
2D MATERIALS  
dc.subject.classification
Físico-Química, Ciencia de los Polímeros, Electroquímica  
dc.subject.classification
Ciencias Químicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
2D Titanium Carbide MXene and Single‐Molecule Fluorescence: Distance‐Dependent Nonradiative Energy Transfer and Leaflet‐Resolved Dye Sensing in Lipid Bilayers  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2025-07-14T11:00:37Z  
dc.journal.volume
36  
dc.journal.number
49  
dc.journal.pagination
1-9  
dc.journal.pais
Alemania  
dc.journal.ciudad
Weinheim  
dc.description.fil
Fil: Manzanares, Lorena. Ludwig Maximilians Universitat; Alemania  
dc.description.fil
Fil: Spurling, Dahnan. Universidad de Dublin; Irlanda  
dc.description.fil
Fil: Szalai, Alan Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Centro de Investigaciones en Bionanociencias "Elizabeth Jares Erijman"; Argentina. Ludwig Maximilians Universitat; Alemania  
dc.description.fil
Fil: Schröder, Tim. Ludwig Maximilians Universitat; Alemania  
dc.description.fil
Fil: Büber, Ece. Ludwig Maximilians Universitat; Alemania  
dc.description.fil
Fil: Ferrari, Giovanni. Ludwig Maximilians Universitat; Alemania  
dc.description.fil
Fil: Dagleish, Martin R. J.. Ludwig Maximilians Universitat; Alemania  
dc.description.fil
Fil: Nicolosi, Valeria. Universidad de Dublin; Irlanda  
dc.description.fil
Fil: Tinnefeld, Philip. Ludwig Maximilians Universitat; Alemania  
dc.journal.title
Advanced Materials  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/10.1002/adma.202411724  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1002/adma.202411724