Mostrar el registro sencillo del ítem

dc.contributor.author
Uicich, Julieta Fabienne  
dc.contributor.author
Penoff, Marcela Elisabeth  
dc.contributor.author
Montemartini, Pablo Ezequiel  
dc.contributor.author
Azat, Seitkhan  
dc.contributor.author
Jouyandeh, Maryam  
dc.contributor.author
Reza Saeb, Mohammad  
dc.contributor.author
Vahabi, Henri  
dc.date.available
2025-07-14T09:29:54Z  
dc.date.issued
2024-11  
dc.identifier.citation
Uicich, Julieta Fabienne; Penoff, Marcela Elisabeth; Montemartini, Pablo Ezequiel; Azat, Seitkhan; Jouyandeh, Maryam; et al.; Fluorinated‐polyhedral oligomeric silsesquioxane (F‐POSS) functionalized sepiolite nanostructures for developing epoxy nanocomposites with tailored crosslinking, antifouling, and self‐cleaning properties; John Wiley & Sons; Journal Of Vinyl & Additive Technology; 31; 2; 11-2024; 382-400  
dc.identifier.issn
1083-5601  
dc.identifier.uri
http://hdl.handle.net/11336/265849  
dc.description.abstract
Developing multifunctional epoxy composites with tailored properties supports energy systems, especially oil and gas industries. We report synthesis of 3D fluorinated-polyhedral oligomeric silsesquioxanes (F-POSS) nanoparticles (NPs) co-condensed on the surface of 2D sepiolite (SEP) nanoclays, and dispersed it within an epoxy resin to facilitate curing kinetics of epoxy-amine system. A catalytic effect was realized, supporting excellent cure index, according to the kinetic models employed. Friedman model suggested double values of activation energy for composites (54.32 KJ/mol for Epoxy/SEP and 50.73 KJ/mol for Epoxy/F-POSS@SEP) compared to blank (reference) resin (26.12 KJ/mol). Nanostructure of F-POSS@SEP observed by transmission electron microscopy (TEM) and scanning electron microscopy (SEM), and Fourier-transform infrared (FTIR) spectroscopy, demonstrating co-condensation of F-POSS and SEP nanoclays. Nanotribology tests suggested higher surface properties. Hardness of epoxy was 0.373 GPa; when modified with 5 and 10 wt% of F-POSS@SEP it resulted in 0.41 and 0.38 GPa, respectively. The reduced modulus was 4.53 GPa for epoxy, while 5.1 and 5.0 GPa for 5 and 10 wt% F-POSS@SEP, respectively. The free surface of composites was studied by SEM and contact angle techniques. F-POSS/SEP nanostructure populated at air-free surface, as a consequence of natural migration of fluorine. Contact angle measurements were performed in dynamic tests, showing increased hydrophobicity of thermoset composites, where an outstanding antifouling behavior was correspondingly achieved. Sliding angles diminished from 19.1° for epoxy to 8.1° and 5.0° for 5 and 10 wt.% of F-POSS@SEP, respectively. Accordingly, fouling of 5 and 10 wt.% F-POSS@SEP modified composites was 42% lower than that for epoxy. Self-cleaning resulted 18% and 16% higher for 5 and 10 wt.% F-POSS@SEP nanocomposites, respectively, compared to epoxy. These results are promising to contribute high-performance materials for the energy production sector.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
John Wiley & Sons  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
SUPERHYDROPHOBICITY  
dc.subject
SELF CLEANING  
dc.subject
ANTIFOULING  
dc.subject.classification
Recubrimientos y Películas  
dc.subject.classification
Ingeniería de los Materiales  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Fluorinated‐polyhedral oligomeric silsesquioxane (F‐POSS) functionalized sepiolite nanostructures for developing epoxy nanocomposites with tailored crosslinking, antifouling, and self‐cleaning properties  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2025-07-10T11:59:59Z  
dc.journal.volume
31  
dc.journal.number
2  
dc.journal.pagination
382-400  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
New York  
dc.description.fil
Fil: Uicich, Julieta Fabienne. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina  
dc.description.fil
Fil: Penoff, Marcela Elisabeth. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina  
dc.description.fil
Fil: Montemartini, Pablo Ezequiel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina  
dc.description.fil
Fil: Azat, Seitkhan. Satbayev University; Kazajistán  
dc.description.fil
Fil: Jouyandeh, Maryam. Université de Lorraine; Francia  
dc.description.fil
Fil: Reza Saeb, Mohammad. Université de Lorraine; Francia  
dc.description.fil
Fil: Vahabi, Henri. Université de Lorraine; Francia  
dc.journal.title
Journal Of Vinyl & Additive Technology  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://4spepublications.onlinelibrary.wiley.com/doi/10.1002/vnl.22177  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1002/vnl.22177