Mostrar el registro sencillo del ítem

dc.contributor.author
Marten, Juan  
dc.contributor.author
Delbianco, Fernando Andrés  
dc.contributor.author
Tohmé, Fernando Abel  
dc.contributor.author
Maguitman, Ana Gabriela  
dc.date.available
2025-07-11T14:57:13Z  
dc.date.issued
2025-06  
dc.identifier.citation
Marten, Juan; Delbianco, Fernando Andrés; Tohmé, Fernando Abel; Maguitman, Ana Gabriela; A methodological approach for inferring causal relationships from opinions and news-derived events with an application to climate change; PeerJ; PeerJ Computer Science; 11; 6-2025; 1-26  
dc.identifier.uri
http://hdl.handle.net/11336/265838  
dc.description.abstract
Social media platforms like Twitter (now X) provide a global forum for discussing ideas. In this work, we propose a novel methodology for detecting causal relationships in online discourse. Our approach integrates multiple causal inference techniques to analyze how public sentiment and discourse evolve in response to key events and influential figures, using five causal detection methods: Direct-LiNGAM, PC, PCMCI, VAR, and stochastic causality. The datasets contain variables, such as different topics, sentiments, and real-world events, among which we seek to detect causal relationships at different frequencies. The proposed methodology is applied to climate change opinions and data, offering insights into the causal relationships among public sentiment, specific topics, and natural disasters. This approach provides a framework for analyzing various causal questions. In the specific case of climate change, we can hypothesize that a surge in discussions on a specific topic consistently precedes a change in overall sentiment, level of aggressiveness, or the proportion of users expressing certain stances. We can also conjecture that real-world events, like natural disasters and the rise to power of politicians leaning towards climate change denial, may have a noticeable impact on the discussion on social media. We illustrate how the proposed methodology can be applied to examine these questions by combining datasets on tweets and climate disasters.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
PeerJ  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/  
dc.subject
Causal Analysis  
dc.subject
Climate Change  
dc.subject
Opinion MIning  
dc.subject
Topic Mining  
dc.subject
Social media mining  
dc.subject
Sentiment analysis  
dc.subject
Stochastic Cusality  
dc.subject.classification
Otras Ciencias de la Computación e Información  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
A methodological approach for inferring causal relationships from opinions and news-derived events with an application to climate change  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2025-07-10T13:10:58Z  
dc.identifier.eissn
2376-5992  
dc.journal.volume
11  
dc.journal.pagination
1-26  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: Marten, Juan. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación; Argentina  
dc.description.fil
Fil: Delbianco, Fernando Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Economía; Argentina  
dc.description.fil
Fil: Tohmé, Fernando Abel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Economía; Argentina  
dc.description.fil
Fil: Maguitman, Ana Gabriela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; Argentina. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación; Argentina  
dc.journal.title
PeerJ Computer Science  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://peerj.com/articles/cs-2964  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.7717/peerj-cs.2964