Artículo
Model-based machine learning of critical brain dynamics
Fecha de publicación:
06/2024
Editorial:
Europhysics Letters
Revista:
Europhysics Letters
ISSN:
0295-5075
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Criticality can be exactly demonstrated in certain models of brain activity, yet it remains challenging to identify in empirical data. We trained a fully connected deep neural network to learn the phases of an excitable model unfolding on the anatomical connectome of human brain. This network was then applied to brain-wide fMRI data acquired during the descent from wakefulness to deep sleep. We report high correlation between the predicted proximity to the critical point and the exponents of cluster size distributions, indicative of subcritical dynamics. This result demonstrates that conceptual models can be leveraged to identify the dynamical regime of real neural systems.
Palabras clave:
NEUROSCIENCE
,
DEEP LEARNING
,
CRITICALITY
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(INFINA)
Articulos de INST.DE FISICA DEL PLASMA
Articulos de INST.DE FISICA DEL PLASMA
Citación
Bocaccio, Hernan; Tagliazucchi, Enzo Rodolfo; Model-based machine learning of critical brain dynamics; Europhysics Letters; Europhysics Letters; 147; 1; 6-2024; 1-5
Compartir
Altmétricas