Mostrar el registro sencillo del ítem

dc.contributor.author
Dussan Cuenca, Anderson  
dc.contributor.author
Buitrago, Roman Horacio  
dc.date.available
2017-10-13T17:02:44Z  
dc.date.issued
2005-12  
dc.identifier.citation
Dussan Cuenca, Anderson; Buitrago, Roman Horacio; Transport mechanism in lightly doped hydrogenated microcrystalline silicon thin films; American Institute of Physics; Journal of Applied Physics; 97; 4; 12-2005; 43711-43717  
dc.identifier.issn
0021-8979  
dc.identifier.uri
http://hdl.handle.net/11336/26577  
dc.description.abstract
Boron-doped microcrystalline silicon films have been deposited in a plasma-enhanced chemical vapor deposition system using silane diluted in hydrogen, and diborane sB2H6d as a dopant gas. The temperature dependence of the dark conductivity has been measured from 120 to 420 K in all samples. In the high-temperature range above room temperature, the carrier transport is found to be thermally activated, with a single activation energy that changes with the B2H6 compensation degree. In the low-temperature range s300–120 Kd, variable range hopping sVRHd was established as a predominant electronic transport mechanism for all samples, with the exception of the sample with a diborane concentration of 12.5 ppm. A model for Mott’s VRH, referred to as the “diffusional model,” which yields a relation between the conductivity and the localized density of gap states, is presented. Using classical equations from the percolation theory and the diffusional model, the density of states near the Fermi level, as well as the hopping parameters, are calculated. A correlation between the hopping parameters for both models is deduced. A numerical factor that improves the value of each parameter is calculated.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
American Institute of Physics  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject.classification
Otras Ciencias Físicas  
dc.subject.classification
Ciencias Físicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Transport mechanism in lightly doped hydrogenated microcrystalline silicon thin films  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2017-10-12T19:57:32Z  
dc.journal.volume
97  
dc.journal.number
4  
dc.journal.pagination
43711-43717  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: Dussan Cuenca, Anderson. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina  
dc.description.fil
Fil: Buitrago, Roman Horacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina  
dc.journal.title
Journal of Applied Physics  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1063/1.1848193  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://aip.scitation.org/doi/10.1063/1.1848193