Mostrar el registro sencillo del ítem

dc.contributor.author
Dimant, Veronica Isabel  
dc.contributor.author
Lassalle, Silvia Beatriz  
dc.contributor.author
Maestre, Manuel  
dc.date.available
2025-07-10T12:11:29Z  
dc.date.issued
2025-01  
dc.identifier.citation
Dimant, Veronica Isabel; Lassalle, Silvia Beatriz; Maestre, Manuel; Fibers and Gleason parts for the maximal ideal space of Au(Bp ); Springer; Banach Journal Of Mathematical Analysis; 19; 4; 1-2025; 1-21  
dc.identifier.issn
1735-8787  
dc.identifier.uri
http://hdl.handle.net/11336/265649  
dc.description.abstract
In the early nineties, R. M. Aron, B. Cole, T. W. Gamelin and W. B. Johnson initiated the study of the maximal ideal space (spectrum) of Banach algebras of holomorphic functions defined on the open unit ball of an infinite dimensional complex Banach space. Within this framework, we investigate the fibers and Gleason parts of the spectrum of the algebra of holomorphic and uniformly continuous functions on the unit ball of p (1 ≤ p < ∞). We show that the inherent geometry of these spaces provides a fundamental ingredient for our results. We prove that whenever p ∈ N (p ≥ 2), the fiber of every z ∈ Bp contains a set of cardinal 2c such that any two elements of this set belong to different Gleason parts. For the case p = 1, we complete the known description of the fibers, showing that, for each z ∈ B 1 \S1 , the fiber over z is not a singleton. Also, we establish that different fibers over elements in S 1 cannot share Gleason parts.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Springer  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/  
dc.subject
Algebras of holomorphic functions  
dc.subject
Spectrum  
dc.subject
Gleason parts  
dc.subject
Fibers  
dc.subject.classification
Matemática Pura  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Fibers and Gleason parts for the maximal ideal space of Au(Bp )  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2025-07-02T09:11:30Z  
dc.journal.volume
19  
dc.journal.number
4  
dc.journal.pagination
1-21  
dc.journal.pais
Alemania  
dc.journal.ciudad
Berlín  
dc.description.fil
Fil: Dimant, Veronica Isabel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de San Andrés. Departamento de Matemáticas y Ciencias; Argentina  
dc.description.fil
Fil: Lassalle, Silvia Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de San Andrés. Departamento de Matemáticas y Ciencias; Argentina  
dc.description.fil
Fil: Maestre, Manuel. Universidad de Valencia; España  
dc.journal.title
Banach Journal Of Mathematical Analysis  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s43037-024-00388-0  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s43037-024-00388-0