Mostrar el registro sencillo del ítem
dc.contributor.author
García Puente, Luis David
dc.contributor.author
Gross, Elizabeth
dc.contributor.author
Harrington, Heather A.
dc.contributor.author
Johnston, Matthew
dc.contributor.author
Meshkat, Nicolette
dc.contributor.author
Pérez Millán, Mercedes Soledad
dc.contributor.author
Shiu, Anne
dc.date.available
2025-07-10T12:06:08Z
dc.date.issued
2025-05
dc.identifier.citation
García Puente, Luis David; Gross, Elizabeth; Harrington, Heather A.; Johnston, Matthew; Meshkat, Nicolette; et al.; Absolute concentration robustness: Algebra and geometry; Academic Press Ltd - Elsevier Science Ltd; Journal Of Symbolic Computation; 128; 5-2025; 1-37
dc.identifier.issn
0747-7171
dc.identifier.uri
http://hdl.handle.net/11336/265645
dc.description.abstract
Motivated by the question of how biological systems maintain homeostasis in changing environments, Shinar and Feinberg introduced in 2010 the concept of absolute concentration robustness (ACR). A biochemical system exhibits ACR in some species if the steady-state value of that species does not depend on initial conditions. Thus, a system with ACR can maintain a constant level of one species even as the initial condition changes. Despite a great deal of interest in ACR in recent years, the following basic question remains open: How can we determine quickly whether a given biochemical system has ACR? Although various approaches to this problem have been proposed, we show that they are incomplete. Accordingly, we present new methods for deciding ACR, which harness computational algebra. We illustrate our results on several biochemical signaling networks.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Academic Press Ltd - Elsevier Science Ltd
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/
dc.subject
ABSOLUTE CONCENTRATION ROBUSTNESS
dc.subject
CHEMICAL REACTION NETWORK THEORY
dc.subject
COMPUTATIONAL ALGEBRAIC GEOMETRY
dc.subject
NUMERICAL ALGEBRAIC GEOMETRY
dc.subject
MASS ACTION SYSTEMS
dc.subject.classification
Otras Matemáticas
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Absolute concentration robustness: Algebra and geometry
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2025-07-02T09:13:37Z
dc.journal.volume
128
dc.journal.pagination
1-37
dc.journal.pais
Estados Unidos
dc.description.fil
Fil: García Puente, Luis David. Colorado College; Estados Unidos
dc.description.fil
Fil: Gross, Elizabeth. University of Hawaii at Manoa; Estados Unidos
dc.description.fil
Fil: Harrington, Heather A.. University of Oxford; Reino Unido. Technische Universität Dresden; Alemania
dc.description.fil
Fil: Johnston, Matthew. Lawrence Technological University; Estados Unidos
dc.description.fil
Fil: Meshkat, Nicolette. Santa Clara University; Estados Unidos
dc.description.fil
Fil: Pérez Millán, Mercedes Soledad. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina
dc.description.fil
Fil: Shiu, Anne. Texas A&M University; Estados Unidos
dc.journal.title
Journal Of Symbolic Computation
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S0747717124001020
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.jsc.2024.102398
Archivos asociados