Mostrar el registro sencillo del ítem

dc.contributor.author
García Puente, Luis David  
dc.contributor.author
Gross, Elizabeth  
dc.contributor.author
Harrington, Heather A.  
dc.contributor.author
Johnston, Matthew  
dc.contributor.author
Meshkat, Nicolette  
dc.contributor.author
Pérez Millán, Mercedes Soledad  
dc.contributor.author
Shiu, Anne  
dc.date.available
2025-07-10T12:06:08Z  
dc.date.issued
2025-05  
dc.identifier.citation
García Puente, Luis David; Gross, Elizabeth; Harrington, Heather A.; Johnston, Matthew; Meshkat, Nicolette; et al.; Absolute concentration robustness: Algebra and geometry; Academic Press Ltd - Elsevier Science Ltd; Journal Of Symbolic Computation; 128; 5-2025; 1-37  
dc.identifier.issn
0747-7171  
dc.identifier.uri
http://hdl.handle.net/11336/265645  
dc.description.abstract
Motivated by the question of how biological systems maintain homeostasis in changing environments, Shinar and Feinberg introduced in 2010 the concept of absolute concentration robustness (ACR). A biochemical system exhibits ACR in some species if the steady-state value of that species does not depend on initial conditions. Thus, a system with ACR can maintain a constant level of one species even as the initial condition changes. Despite a great deal of interest in ACR in recent years, the following basic question remains open: How can we determine quickly whether a given biochemical system has ACR? Although various approaches to this problem have been proposed, we show that they are incomplete. Accordingly, we present new methods for deciding ACR, which harness computational algebra. We illustrate our results on several biochemical signaling networks.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Academic Press Ltd - Elsevier Science Ltd  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/  
dc.subject
ABSOLUTE CONCENTRATION ROBUSTNESS  
dc.subject
CHEMICAL REACTION NETWORK THEORY  
dc.subject
COMPUTATIONAL ALGEBRAIC GEOMETRY  
dc.subject
NUMERICAL ALGEBRAIC GEOMETRY  
dc.subject
MASS ACTION SYSTEMS  
dc.subject.classification
Otras Matemáticas  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Absolute concentration robustness: Algebra and geometry  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2025-07-02T09:13:37Z  
dc.journal.volume
128  
dc.journal.pagination
1-37  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: García Puente, Luis David. Colorado College; Estados Unidos  
dc.description.fil
Fil: Gross, Elizabeth. University of Hawaii at Manoa; Estados Unidos  
dc.description.fil
Fil: Harrington, Heather A.. University of Oxford; Reino Unido. Technische Universität Dresden; Alemania  
dc.description.fil
Fil: Johnston, Matthew. Lawrence Technological University; Estados Unidos  
dc.description.fil
Fil: Meshkat, Nicolette. Santa Clara University; Estados Unidos  
dc.description.fil
Fil: Pérez Millán, Mercedes Soledad. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina  
dc.description.fil
Fil: Shiu, Anne. Texas A&M University; Estados Unidos  
dc.journal.title
Journal Of Symbolic Computation  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S0747717124001020  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.jsc.2024.102398