Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Predicting prostate cancer progression with a Multi-lncRNA expression-based risk score and nomogram integrating ISUP grading

Ledesma Bazan, Paula SabrinaIcon ; Cascardo, Florencia Laura; Bizzotto, Juan Antonio; Olszevicki, Santiago; Vazquez, Elba SusanaIcon ; Gueron, GeraldineIcon ; Cotignola, Javier HernanIcon
Fecha de publicación: 06/2024
Editorial: Elsevier
Revista: Non-coding RNA Research
ISSN: 2468-0540
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Bioquímica y Biología Molecular

Resumen

Prostate cancer is a highly heterogeneous disease; therefore, estimating patient prognosis accurately is challenging due to the lack of biomarkers with sufficient specificity and sensitivity. One of the current challenges lies in integrating genomic and transcriptomic data with clinico-pathological features and in incorporating their application in everyday clinical practice. Therefore, we aimed to model a risk score and nomogram containing long non-coding RNA (lncRNA) expression and clinico-pathological data to better predict the probability of prostate cancer progression. We performed bioinformatics analyses to identify lncRNAs differentially expressed across various prostate cancer stages and associated with progression-free survival. This information was further integrated into a prognostic risk score and nomogram containing transcriptomic and clinico-pathological features to estimate the risk of disease progression. We used RNA-seq data from 5 datasets from public repositories (total n = 178) comprising different stages of prostate cancer: pre-treatment primary prostate adenocarcinomas, post-treatment tumors and metastatic castration resistant prostate cancer. We found 30 lncRNAs with consistent differential expression in all comparisons made using two R-based packages. Multivariate progression-free survival analysis including the ISUP group as covariate, revealed that 7/30 lncRNAs were significantly associated with time-to-progression. Next, we combined the expression of these 7 lncRNAs into a multi-lncRNA score and dichotomized the patients into low- or high-score. Patients with a high-score showed a 4-fold risk of disease progression (HR = 4.30, 95 %CI = 2.66–6.97, p = 3.1e-9). Furthermore, we modelled a combined risk-score containing information on the multi-lncRNA score and ISUP group. We found that patients with a high-risk score had nearly 8-fold risk of progression (HR = 7.65, 95 %CI = 4.05–14.44, p = 3.4e-10). Finally, we created and validated a nomogram to help uro-oncologists to better predict patient's risk of progression at 3- and 5-years post-diagnosis. In conclusion, the integration of lncRNA expression data and clinico-pathological features of prostate tumors into predictive models might aid in tailored disease risk assessment and treatment for patients with prostate cancer.
Palabras clave: PROSTATE CANCER , LNC-RNA , TRANSCRIPTOMICS , BIOMARKER
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 6.363Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Atribución-NoComercial-SinDerivadas 2.5 Argentina (CC BY-NC-ND 2.5 AR)
Identificadores
URI: http://hdl.handle.net/11336/265602
URL: https://www.sciencedirect.com/science/article/pii/S2468054024000143
DOI: https://doi.org/10.1016/j.ncrna.2024.01.014
Colecciones
Articulos(IBYME)
Articulos de INST.DE BIOLOGIA Y MEDICINA EXPERIMENTAL (I)
Articulos(IQUIBICEN)
Articulos de INSTITUTO DE QUIMICA BIOLOGICA DE LA FACULTAD DE CS. EXACTAS Y NATURALES
Citación
Ledesma Bazan, Paula Sabrina; Cascardo, Florencia Laura; Bizzotto, Juan Antonio; Olszevicki, Santiago; Vazquez, Elba Susana; et al.; Predicting prostate cancer progression with a Multi-lncRNA expression-based risk score and nomogram integrating ISUP grading; Elsevier; Non-coding RNA Research; 9; 2; 6-2024; 612-623
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES