Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Galaxies in the zone of avoidance: Misclassifications using machine learning tools

Marchant Cortés, P.; Nilo Castellón, José Luis; Alonso, Maria VictoriaIcon ; Baravalle, Laura DanielaIcon ; Villalón, Carolina InésIcon ; Sgró, Mario AgustínIcon ; Daza Perilla, Ingrid VanessaIcon ; Soto, M.; Milla Castro, F.; Minniti, Dante; Masetti, N.; Valotto, Carlos AlbertoIcon ; Lares Harbin Latorre, MarceloIcon
Fecha de publicación: 05/2024
Editorial: EDP Sciences
Revista: Astronomy and Astrophysics
ISSN: 0004-6361
e-ISSN: 1432-0746
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Astronomía

Resumen

Context. Automated methods for classifying extragalactic objects in large surveys offer significant advantages compared to manual approaches in terms of efficiency and consistency. However, the existence of the Galactic disk raises additional concerns. These regions are known for high levels of interstellar extinction, star crowding, and limited data sets and studies. Aims. In this study, we explore the identification and classification of galaxies in the zone of avoidance (ZoA). In particular, we compare our results in the near-infrared (NIR) with X-ray data. Methods. We analyzed the appearance of objects in the Galactic disk classified as galaxies using a published machine-learning (ML) algorithm and make a comparison with the visually confirmed galaxies from the VVV NIRGC catalog. Results. Our analysis, which includes the visual inspection of all sources cataloged as galaxies throughout the Galactic disk using ML techniques reveals significant differences. Only four galaxies were found in both the NIR and X-ray data sets. Several specific regions of interest within the ZoA exhibit a high probability of being galaxies in X-ray data but closely resemble extended Galactic objects. Our results indicate the difficulty in using ML methods for galaxy classification in the ZoA, which is mainly due to the scarcity of information on galaxies behind the Galactic plane in the training set. They also highlight the importance of considering specific factors that are present to improve the reliability and accuracy of future studies in this challenging region.
Palabras clave: CATALOGS , SURVEYS , INFRARED: GALAXIES , X-RAYS: GALAXIES
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 2.316Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution 2.5 Unported (CC BY 2.5)
Identificadores
URI: http://hdl.handle.net/11336/265497
URL: https://www.aanda.org/10.1051/0004-6361/202348637
DOI: http://dx.doi.org/10.1051/0004-6361/202348637
Colecciones
Articulos(IATE)
Articulos de INST.DE ASTRONOMIA TEORICA Y EXPERIMENTAL
Citación
Marchant Cortés, P.; Nilo Castellón, José Luis; Alonso, Maria Victoria; Baravalle, Laura Daniela; Villalón, Carolina Inés; et al.; Galaxies in the zone of avoidance: Misclassifications using machine learning tools; EDP Sciences; Astronomy and Astrophysics; 686; A18; 5-2024; 1-10
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES