Mostrar el registro sencillo del ítem

dc.contributor.author
Thannickal, Sara A.  
dc.contributor.author
Battini, Leandro  
dc.contributor.author
Spector, Sophie N.  
dc.contributor.author
Noval, María Gabriela  
dc.contributor.author
Alvarez, Diego Ezequiel  
dc.contributor.author
Stapleford, Kenneth A.  
dc.date.available
2025-07-07T11:30:18Z  
dc.date.issued
2024-07  
dc.identifier.citation
Thannickal, Sara A.; Battini, Leandro; Spector, Sophie N.; Noval, María Gabriela; Alvarez, Diego Ezequiel; et al.; Changes in the chikungunya virus E1 glycoprotein domain II and hinge influence E2 conformation, infectivity, and virus-receptor interactions; American Society for Microbiology; Journal of Virology; 98; 7; 7-2024; 1-25  
dc.identifier.issn
0022-538X  
dc.identifier.uri
http://hdl.handle.net/11336/265384  
dc.description.abstract
In a previous study to understand how the chikungunya virus (CHIKV) E1 glycoprotein β-strand c functions, we identified several attenuating variants at E1 residue V80 and the emergence of second-site mutations in the fusion loop (E1-M88L) and hinge region (E1-N20Y) with the V80 variants in vivo. The emergence of these mutations led us to question how changes in E1 may contribute to CHIKV infection at the molecular level. Here, we use molecular dynamics to understand how changes in the E1 glycoprotein may influence the CHIKV glycoprotein E1-E2 complex. We found that E1 domain II variants lead to E2 conformational changes, allowing us to hypothesize that emerging variants E1-M88L and E1-N20Y could also change E2 conformation and function. We characterized CHIKV E1-M88L and E1-N20Y in vitro and in vivo to understand how these regions of the E1 glycoprotein contribute to host-specific infection. We found that CHIKV E1-N20Y enhanced infectivity in mosquito cells, while the CHIKV E1-M88L variant enhanced infectivity in both BHK-21 and C6/36 cells and led to changes in viral cholesterol-dependence. Moreover, we found that E1-M88L and E1-N20Y changed E2 conformation, heparin binding, and interactions with the receptor Mxra8. Interestingly, the CHIKV E1-M88L variant increased replication in Mxra8-deficient mice compared to WT CHIKV, yet was attenuated in mouse fibroblasts, suggesting that residue E1-M88 may function in a cell-type-dependent entry. Taken together, these studies show that key residues in the CHIKV E1 domain II and hinge region function through changes in E1-E2 dynamics to facilitate cell- and host-dependent entry.IMPORTANCEArboviruses are significant global public health threats, and their continued emergence around the world highlights the need to understand how these viruses replicate at the molecular level. The alphavirus glycoproteins are critical for virus entry in mosquitoes and mammals, yet how these proteins function is not completely understood. Therefore, it is critical to dissect how distinct glycoprotein domains function in vitro and in vivo to address these gaps in our knowledge. Here, we show that changes in the CHIKV E1 domain II and hinge alter E2 conformations leading to changes in virus-receptor and -glycosaminoglycan interactions and cell-specific infection. These results highlight that adaptive changes in E1 can have a major effect on virus attachment and entry, furthering our knowledge of how alphaviruses infect mammals and insects.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
American Society for Microbiology  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
alphavirus  
dc.subject
dynamics  
dc.subject
glycoprotein  
dc.subject
infectivity  
dc.subject.classification
Virología  
dc.subject.classification
Ciencias Biológicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Changes in the chikungunya virus E1 glycoprotein domain II and hinge influence E2 conformation, infectivity, and virus-receptor interactions  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2025-07-03T14:10:28Z  
dc.journal.volume
98  
dc.journal.number
7  
dc.journal.pagination
1-25  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: Thannickal, Sara A.. University Grossman; Estados Unidos  
dc.description.fil
Fil: Battini, Leandro. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Biotecnológicas; Argentina  
dc.description.fil
Fil: Spector, Sophie N.. University Grossman; Estados Unidos  
dc.description.fil
Fil: Noval, María Gabriela. University Grossman; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Alvarez, Diego Ezequiel. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Biotecnológicas; Argentina  
dc.description.fil
Fil: Stapleford, Kenneth A.. University Grossman; Estados Unidos  
dc.journal.title
Journal of Virology  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://journals.asm.org/doi/10.1128/jvi.00679-24  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1128/jvi.00679-24