Mostrar el registro sencillo del ítem

dc.contributor.author
Mulet de Los Reyes, Alexander  
dc.contributor.author
Hyde Lord, Victoria  
dc.contributor.author
Buemi, María Elena  
dc.contributor.author
Gandia, Daniel Enrique  
dc.contributor.author
Gómez Déniz, Luis  
dc.contributor.author
Noriega Alemán, Maikel  
dc.contributor.author
Suárez, Cecilia Ana  
dc.date.available
2025-07-07T11:07:13Z  
dc.date.issued
2024-03  
dc.identifier.citation
Mulet de Los Reyes, Alexander; Hyde Lord, Victoria; Buemi, María Elena; Gandia, Daniel Enrique; Gómez Déniz, Luis; et al.; Combined use of radiomics and artificial neural networks for the three‐dimensional automatic segmentation of glioblastoma multiforme; Wiley Blackwell Publishing, Inc; Expert Systems; 41; 9; 3-2024; 1-14  
dc.identifier.issn
0266-4720  
dc.identifier.uri
http://hdl.handle.net/11336/265372  
dc.description.abstract
Glioblastoma multiforme (GBM) is the most prevalent and aggressive primary brain tumor that has the worst prognosis in adults. Currently, the automatic segmentation of this kind of tumor is being intensively studied. Here, the automatic three-dimensional segmentation of the GBM is achieved with its related subzones (active tumor, inner necrosis, and peripheral edema). Preliminary segmentations were first defined based on the four basic magnetic resonance imaging modalities and classic image processing methods (multithreshold Otsu, Chan-Vese active contours, and morphological erosion). After an automatic gap-filling post processing step, these preliminary segmentations were combined and corrected by a supervised artificial neural network of multilayer perceptron type with a hidden layer of 80 neurons, fed by 30 selected radiomic features of gray intensity and texture. Network classification has an overall accuracy of 83.9%, while the complete combined algorithm achieves average Dice similarity coefficients of 89.3%, 80.7%, 79.7% and 66.4% for the entire region of interest, active tumor, edema, and necrosis segmentations, respectively. These values are in the range of the best reported in the present bibliography, but even with better Hausdorff distances and lower computational costs. Results presented here evidence that it is possible to achieve the automatic segmentationof this kind of tumor by traditional radiomics. This has relevant clinical potential at the time of diagnosis, precision radiotherapy planning, or post-treatment response evaluation.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Wiley Blackwell Publishing, Inc  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/  
dc.subject
GLIOBLASTOMA MULTIFORME  
dc.subject
AUTOMATIC SEGMENTION  
dc.subject
IMAGE PROCESSING  
dc.subject
RADIOMICS  
dc.subject
ARTIFICIAL NEURAL NETWORKS  
dc.subject.classification
Otras Ciencias Médicas  
dc.subject.classification
Otras Ciencias Médicas  
dc.subject.classification
CIENCIAS MÉDICAS Y DE LA SALUD  
dc.subject.classification
Ciencias de la Información y Bioinformática  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Combined use of radiomics and artificial neural networks for the three‐dimensional automatic segmentation of glioblastoma multiforme  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2025-07-03T14:47:03Z  
dc.journal.volume
41  
dc.journal.number
9  
dc.journal.pagination
1-14  
dc.journal.pais
Reino Unido  
dc.journal.ciudad
Londres  
dc.description.fil
Fil: Mulet de Los Reyes, Alexander. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física del Plasma. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física del Plasma; Argentina  
dc.description.fil
Fil: Hyde Lord, Victoria. Instituto Tecnológico de Buenos Aires; Argentina  
dc.description.fil
Fil: Buemi, María Elena. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina  
dc.description.fil
Fil: Gandia, Daniel Enrique. No especifíca;  
dc.description.fil
Fil: Gómez Déniz, Luis. Universidad de Las Palmas de Gran Canaria; España  
dc.description.fil
Fil: Noriega Alemán, Maikel. Universidad de Oriente. Facultad de Ingenieria En Telecomunicaciones, Informatica y Biomedica.; Cuba  
dc.description.fil
Fil: Suárez, Cecilia Ana. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física del Plasma. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física del Plasma; Argentina  
dc.journal.title
Expert Systems  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1111/exsy.13598