Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Intrinsic and extrinsic relaxation mechanisms for controlling spin current intensity in Fe 100 − x Co x /Ta bilayers

Velázquez Rodriguez, DanielIcon ; Gómez, J. E.; Avilés Félix, Luis; Ampuero Torres, Jose LuisIcon ; Torres, T. E.; Pérez Martínez, Ángel AlejandroIcon ; Morbidel, Leonardo; Goijman, Dafne YaelIcon ; Rojas Sanchez, Juan CarlosIcon ; Aguirre, M. H.; Milano, JulianIcon ; Butera, Alejandro RicardoIcon
Fecha de publicación: 07/2024
Editorial: IOP Publishing
Revista: Journal of Physics D: Applied Physics
ISSN: 0022-3727
e-ISSN: 1361-6463
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Física de los Materiales Condensados

Resumen

Controlling the damping parameter in metallic ferromagnetic thin films is a key step for spintronic applications in which spin currents are generated by spin pumping. The coexistence of two states with low and high damping constant values would allow to obtain states of high and low spin current intensity, respectively. We have fabricated Fe100−xCox/Ta (with nominal x = 0, 15, 20, 25, 30 and 35) bilayers in which the Fe100−xCox layers grow epitaxially and the Ta layer is polycrystalline. We have found the coexistence of Gilbert damping and two magnon scattering mechanisms linked to a sign change in the magnetocrystalline anisotropy constant that allows the manipulation of low and high intensity states of the measured inverse spin Hall effect voltage. Bilayers with lower Co concentrations (x ⩽ 25%) present different relaxation mechanisms (isotropic Gilbert damping and two magnon scattering) and an extra ferromagnetic resonance linewidth broadening produced due to mosaicity. Bilayers with Co concentration x > 25% present a dominating Gilbert damping for all directions in the film plane. However, in this concentration range the damping constant is anisotropic and when the magnetic field is applied along the hard magnetization direction α increases ∼420% with respect to the value obtained for the easy magnetization direction. Coexistence of isotropic Gilbert damping and two magnon scattering generated spin currents 2.5 times larger when the field is applied along the hard magnetization axis compared to the value observed in the easy magnetization axis. These findings make the Fe100−xCox/Ta system an excellent candidate for spintronic device applications.
Palabras clave: Anisotropic damping , Ferromagnetic resonance , Spin current , Spin pumping
Ver el registro completo
 
Archivos asociados
Tamaño: 2.630Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/265277
URL: https://iopscience.iop.org/article/10.1088/1361-6463/ad5b6d
DOI: http://dx.doi.org/10.1088/1361-6463/ad5b6d
Colecciones
Articulos (UE-INN - NODO BARILOCHE)
Articulos de UNIDAD EJECUTORA INSTITUTO DE NANOCIENCIA Y NANOTECNOLOGIA - NODO BARILOCHE
Citación
Velázquez Rodriguez, Daniel; Gómez, J. E.; Avilés Félix, Luis; Ampuero Torres, Jose Luis; Torres, T. E.; et al.; Intrinsic and extrinsic relaxation mechanisms for controlling spin current intensity in Fe 100 − x Co x /Ta bilayers; IOP Publishing; Journal of Physics D: Applied Physics; 57; 39; 7-2024; 1-11
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES