Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

PED in 2024: improving the community deposition of structural ensembles for intrinsically disordered proteins

Ghafouri, Hamidreza; Lazar, Tamas; Del Conte, Alessio; Tenorio Ku, Luiggi G.; Aspromonte, Maria C.; Bernadó, Pau; Chaves Arquero, Belén; Chemes, Lucia BeatrizIcon ; Clementel, Damiano; Cordeiro, Tiago N.; Elena Real, Carlos A.; Feig, Michael; Felli, Isabella C.; Ferrari, Carlo; Forman Kay, Julie D.; Gomes, Tiago; Gondelaud, Frank; Gradinaru, Claudiu C.; Ha Duong, Tâp; Head Gordon, Teresa; Heidarsson, Pétur O.; Janson, Giacomo; Jeschke, Gunnar; Leonardi, Emanuela; Liu, Zi Hao; Longhi, Sonia; Lund, Xamuel L.; Macias, Maria J.; Martin Malpartida, Pau; Mercadante, Davide; Mouhand, Assia; Nagy, Gabor; Nugnes, María VictoriaIcon ; Pérez Cañadillas, José Manuel; Pesce, Giulia; Pierattelli, Roberta; Piovesan, Damiano; Quaglia, Federica; Ricard Blum, Sylvie; Robustelli, Paul; Sagar, Amin; Salladini, Edoardo; Sénicourt, Lucile; Sibille, Nathalie; Teixeira, João M. C.; Tsangaris, Thomas E.; Varadi, Mihaly; Tompa, Peter; Tosatto, Silvio C. E.; Monzon, Alexander Miguel
Fecha de publicación: 01/2024
Editorial: Oxford University Press
Revista: Nucleic Acids Research
ISSN: 1362-4962
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Bioquímica y Biología Molecular

Resumen

The Protein Ensemble Database (PED) (URL: https://proteinensemble.org) is the primary resource for depositing structural ensembles of intrinsically disordered proteins. This updated version of PED reflects advancements in the field, denoting a continual expansion with a total of 461 entries and 538 ensembles, including those generated without explicit experimental data through novel machine learning (ML) techniques. With this significant increment in the number of ensembles, a few yet-unprecedented new entries entered the database, including those also determined or refined by electron paramagnetic resonance or circular dichroism data. In addition, PED was enriched with several new features, including a novel deposition service, improved user interface, new database cross-referencing options and integration with the 3D-Beacons network-all representing efforts to improve the FAIRness of the database. Foreseeably, PED will keep growing in size and expanding with new types of ensembles generated by accurate and fast ML-based generative models and coarse-grained simulations. Therefore, among future efforts, priority will be given to further develop the database to be compatible with ensembles modeled at a coarse-grained level.
Palabras clave: DISORDERED PROTEINS , PROTEIN ENSEMBLE , BIOINFORMATICS
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 990.5Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/265216
DOI: http://dx.doi.org/10.1093/nar/gkad947
Colecciones
Articulos (IIBIO)
Articulos de INSTITUTO DE INVESTIGACIONES BIOTECNOLOGICAS
Citación
Ghafouri, Hamidreza; Lazar, Tamas; Del Conte, Alessio; Tenorio Ku, Luiggi G.; Aspromonte, Maria C.; et al.; PED in 2024: improving the community deposition of structural ensembles for intrinsically disordered proteins; Oxford University Press; Nucleic Acids Research; 52; D1; 1-2024; 536-544
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES