Mostrar el registro sencillo del ítem

dc.contributor.author
Bonomini, Maria Paula  
dc.contributor.author
Ghiglioni, Eduardo Mario  
dc.contributor.author
Rios, Noelia Belén  
dc.date.available
2025-07-04T10:50:56Z  
dc.date.issued
2025-06  
dc.identifier.citation
Bonomini, Maria Paula; Ghiglioni, Eduardo Mario; Rios, Noelia Belén; Graph spectral analysis using electroencephalography in Alzheimer disease and frontotemporal dementia patients; World Scientific; International Journal of Neural Systems; 6-2025; 1-16  
dc.identifier.issn
0129-0657  
dc.identifier.uri
http://hdl.handle.net/11336/265209  
dc.description.abstract
Graph theory has proven to be useful in studying brain dysfunction in Alzheimer´s disease using magnetoencephalography (MEG) and fMRI signals. However, it has not yet been tested enough with reduced sets of electrodes, as in the 10-20 EEG. In this work, we applied techniques from the graph spectral analysis (GSA) derived from EEG signals of patients with Alzheimer, Frontotemporal Dementia and control subjects. A collection of global GSA metrics were computed, accounting for general properties of the adjacency or Laplacian matrices. Also, regional GSA metrics were calculated, disentangling centrality measures in five cortical regions (frontal, central, parietal, temporal and occipital). These two sort of measures were then utilized in a binary AD/controls classification problem to test their utility in AD diagnosis and identify most valuable parameters. The Theta band appeared as the most connected and synchronizable rhythm for all three groups. Also, it was the rhythm with most preserved connections among temporal electrodes, exhibiting the shortest average distances among T_3, T_4, T_5 and T_6. In addition, Theta emerged as the rhythm with the highest classification performances based on regional parameters according to a k=5 cross-validation scheme (mean accuracy=0.74±0.03, mean recall=0.72±0.05 and mean F1-score=0.72pm0.03). In general, regional parameters produced better classification performances for most of the rhythms, encouraging further investigation into GSA parameters with refined spatial and functional specificity.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
World Scientific  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
GRAPH SPECTRAL ANALYSIS  
dc.subject
EEG  
dc.subject
ALZHEIMER DISEASE  
dc.subject.classification
Matemática Aplicada  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Graph spectral analysis using electroencephalography in Alzheimer disease and frontotemporal dementia patients  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2025-07-02T09:05:29Z  
dc.journal.pagination
1-16  
dc.journal.pais
Singapur  
dc.description.fil
Fil: Bonomini, Maria Paula. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Instituto Tecnológico de Buenos Aires; Argentina. Universidad Tecnologica Nacional. Facultad Regional Haedo. Centro de Ingenieria de Recubrimientos Especiales y Nanoestructuras.; Argentina  
dc.description.fil
Fil: Ghiglioni, Eduardo Mario. Universidad Nacional de la Plata. Facultad de Cs.exactas. Centro de Matematica de la Plata.; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina  
dc.description.fil
Fil: Rios, Noelia Belén. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de la Plata. Facultad de Cs.exactas. Centro de Matematica de la Plata.; Argentina  
dc.journal.title
International Journal of Neural Systems  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.worldscientific.com/doi/10.1142/S0129065725500480  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1142/S0129065725500480