Artículo
Tauroursodeoxycholate prevents estradiol 17β-d-glucuronide-induced cholestasis and endocytosis of canalicular transporters by switching off pro-cholestatic signaling pathways
Medeot, Anabela Carolina
; Boaglio, Andrea Carolina
; Salas, Gimena
; Maidagan, Paula María
; Miszczuk, Gisel Sabrina
; Barosso, Ismael Ricardo
; Sanchez Pozzi, Enrique Juan
; Crocenzi, Fernando Ariel
; Roma, Marcelo Gabriel









Fecha de publicación:
09/2024
Editorial:
Pergamon-Elsevier Science Ltd
Revista:
Life Sciences
ISSN:
0024-3205
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Aims: Estradiol 17β-D-glucuronide (E217G) induces cholestasis by triggering endocytosis and further intracellular retention of the canalicular transporters Bsep and Mrp2, in a cPKC- and PI3K-dependent manner, respectively. Pregnancy-induced cholestasis has been associated with E217G cholestatic effect, and is routinely treated with ursodeoxycholic acid (UDCA). Since protective mechanisms of UDCA in E217G-induced cholestasis are still unknown, we ascertained here whether its main metabolite, tauroursodeoxycholate (TUDC), can prevent endocytosis of canalicular transporters by counteracting cPKC and PI3K/Akt activation. Main methods: Activation of cPKC and PI3K/Akt was evaluated in isolated rat hepatocytes by immunoblotting (assessment of membrane-bound and phosphorylated forms, respectively). Bsep/Mrp2 function was quantified in isolated rat hepatocyte couplets (IRHCs) by assessing the apical accumulation of their fluorescent substrates, CLF and GS-MF, respectively. We also studied, in isolated, perfused rat livers (IPRLs), the status of Bsep and Mrp2 transport function, assessed by the biliary excretion of TC and DNP-SG, respectively, and Bsep/Mrp2 localization by immunofluorescence. Key findings: E217G activated both cPKC- and PI3K/Akt-dependent signaling, and pretreatment with TUDC significantly attenuated these activations. In IRHCs, TUDC prevented the E217G-induced decrease in apical accumulation of CLF and GS-MF, and inhibitors of protein phosphatases failed to counteract this protection. In IPRLs, E217G induced an acute decrease in bile flow and in the biliary excretion of TC and DNP-SG, and this was prevented by TUDC. Immunofluorescence studies revealed that TUDC prevented E217G-induced Bsep/Mrp2 endocytosis. Significance: TUDC restores function and localization of Bsep/Mrp2 impaired by E217G, by preventing both cPKC and PI3K/Akt activation in a protein-phosphatase-independent manner.
Palabras clave:
Tauroursodeoxycholate
,
Estradiol 17β-d-glucuronide
,
Cholestasis
,
Signaling
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IFISE)
Articulos de INST.DE FISIOLOGIA EXPERIMENTAL (I)
Articulos de INST.DE FISIOLOGIA EXPERIMENTAL (I)
Citación
Medeot, Anabela Carolina; Boaglio, Andrea Carolina; Salas, Gimena; Maidagan, Paula María; Miszczuk, Gisel Sabrina; et al.; Tauroursodeoxycholate prevents estradiol 17β-d-glucuronide-induced cholestasis and endocytosis of canalicular transporters by switching off pro-cholestatic signaling pathways; Pergamon-Elsevier Science Ltd; Life Sciences; 352; 122839; 9-2024; 1-10
Compartir
Altmétricas