Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Identification of genes involved in Kranz anatomy evolution of non-model grasses using unsupervised machine learning

Prochetto, SantiagoIcon ; Stegmayer, GeorginaIcon ; Studer, Anthony J; Reinheimer, RenataIcon
Fecha de publicación: 02/2024
Editorial: Cold Spring Harbor Laboratory Press
Revista: bioRxiv
e-ISSN: 2692-8205
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Biología; Ciencias de la Información y Bioinformática

Resumen

Kranz syndrome is a set of leaf anatomical and functional characteristics of species using C4 photosynthesis. The current model for the evolution of C4 photosynthesis from a C3 ancestor proposes a series of gradual anatomical changes followed by a biochemical adaptation of the C4 cycle enzymatic machinery. In this work, leaf anatomical traits from closely related C3, C4 and intermediate species (Proto-Kranz, PK) were analyzed together with gene expression data to discover potential drivers for the establishment of Kranz anatomy using unsupervised machine learning. Species-specific Self-Organizing Maps (SOM) were developed to group features (genes and phenotypic traits) into clusters (neurons) according to their expression along the leaf developmental gradient. The analysis with SOM allowed us to identify candidate genes as enablers of key anatomical traits differentiation related to the area of mesophyll (M) and bundle sheath (BS) cells, vein density, and the interface between M and BS cells. At the same time, we identified a small subset of genes that displaced together with the change in the area of the BS cell along evolution suggesting a salient role in the origin of Kranz anatomy in grasses.
Palabras clave: Leaf anatomy , Self organizing maps , Photosynthesis , Transcription factors
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 2.338Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Atribución-NoComercial-SinDerivadas 2.5 Argentina (CC BY-NC-ND 2.5 AR)
Identificadores
URI: http://hdl.handle.net/11336/265171
DOI: https://doi.org/10.1101/2024.01.31.578221
URL: http://biorxiv.org/lookup/doi/10.1101/2024.01.31.578221
Colecciones
Articulos(IAL)
Articulos de INSTITUTO DE AGROBIOTECNOLOGIA DEL LITORAL
Citación
Prochetto, Santiago; Stegmayer, Georgina; Studer, Anthony J; Reinheimer, Renata; Identification of genes involved in Kranz anatomy evolution of non-model grasses using unsupervised machine learning; Cold Spring Harbor Laboratory Press; bioRxiv; 2-2024; 1-37
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES