Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Remote Sensing-Derived Environmental Variables to Estimate Transmission Risk and Predict Malaria Cases in Argentina: A Pre-Certification Study (1986–2005)

Cuellar, Ana; Coello Peralta, Roberto D.; Calle Atariguana, Davis; Palacios Macias, Martha; Duque Padilla, Paul LeonardoIcon ; Galindo, Liliana María; Zaidenberg, Mario; Dantur Juri, Maria JuliaIcon
Fecha de publicación: 05/2025
Editorial: Multidisciplinary Digital Publishing Institute
Revista: Pathogens
ISSN: 2076-0817
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Zoología, Ornitología, Entomología, Etología

Resumen

Early warning systems rely on statistical prediction models, with environmental risks and remote sensing data serving as essential sources of information for their development. The present work is focused on the use of remote sensing for the estimation of transmission risk and the prediction of malaria cases in northwest Argentina. This study was conducted in the city of San Ramón de la Nueva Orán, where cases of the disease have been reported from 1986 to 2005. The relationship between reported malaria cases and climatic/environmental variables—including the normalized difference vegetation index (NDVI), normalized difference water index (NDWI), and land surface temperature (LST)—obtained from Landsat 5 and 7 satellite images was analyzed using multilevel Poisson regression analyses. An increased abundance of reported malaria cases was observed in summer. An ARIMA (autoregressive integrated moving average) temporal series model incorporating environmental variables was developed to forecast malaria cases in the year 2000. The analysis of the relationship between malaria cases and environmental and climatic factors showed that malaria cases were associated with increases in LST and mean temperature and a decrease in the NDVI. Early warning systems that provide information about spatial and temporal predictions of epidemics could help to control and prevent malaria outbreaks. Based on these findings, this study is expected to support the development of future prevention and control measures by health officials.
Palabras clave: Malaria , Predictive models , Satellite images , ARIMA temporal series
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 3.745Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution 2.5 Unported (CC BY 2.5)
Identificadores
URI: http://hdl.handle.net/11336/265147
URL: https://www.mdpi.com/2076-0817/14/5/448
DOI: http://dx.doi.org/10.3390/pathogens14050448
Colecciones
Articulos(UEL)
Articulos de UNIDAD EJECUTORA LILLO
Citación
Cuellar, Ana; Coello Peralta, Roberto D.; Calle Atariguana, Davis; Palacios Macias, Martha; Duque Padilla, Paul Leonardo; et al.; Remote Sensing-Derived Environmental Variables to Estimate Transmission Risk and Predict Malaria Cases in Argentina: A Pre-Certification Study (1986–2005); Multidisciplinary Digital Publishing Institute; Pathogens; 14; 5; 5-2025; 448-467
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES