Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Generalized Time Domain Prediction Model for Motor Imagery-based Wheelchair Movement Control

Al Qaysi, Z. T.; Suzani, M. S; Abdul Rashid, Nazre Bin; Ismail, Reem D.; Ahmed, M.A.; Aljanabi, Rasha A.; Gil Costa, Graciela VerónicaIcon
Fecha de publicación: 06/2024
Editorial: Mesopotamian Academic Press
Revista: Mesopotamian Journal of Big Data
ISSN: 2958-6453
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ciencias de la Computación

Resumen

Brain-computer interface (BCI-MI)-based wheelchair control is, in principle, an appropriate method for completely paralyzed people with a healthy brain. In a BCI-based wheelchair control system, pattern recognition in terms of preprocessing, feature extraction, and classification plays a significant role in avoiding recognition errors, which can lead to the initiation of the wrong command that will put the user in unsafe condition. Therefore, this research´s goal is to create a time-domain generic pattern recognition model (GPRM) of two-class EEG-MI signals for use in a wheelchair control system. This GPRM has the advantage of having a model that is applicable to unknown subjects, not just one. This GPRM has been developed, evaluated, and validated by utilizing two datasets, namely, the BCI Competition IV and the Emotive EPOC datasets. Initially, fifteen-time windows were investigated with seven machine learning methods to determine the optimal time window as well as the best classification method with strong generalizability. Evidently, the experimental results of this study revealed that the duration of the EEG-MI signal in the range of 4–6 seconds (4–6 s) has a high impact on the classification accuracy while extracting the signal features using five statistical methods. Additionally, the results demonstrate a one-second latency after each command cue when using the eight-second EEG-MI signal that the Graz protocol used in this study. This one-second latency is inevitable because it is practically impossible for the subjects to imagine their MI hand movement instantly. Therefore, at least one second is required for subjects to prepare to initiate their motor imagery hand movement. Practically, the five statistical methods are efficient and viable for decoding the EEG-MI signal in the time domain. Evidently, the GPRM model based on the LR classifier showed its ability to achieve an impressive classification accuracy of 90%, which was validated on the Emotive EPOC dataset. The GPRM developed in this study is highly adaptable and recommended for deployment in real-time EEG-MIbased wheelchair control systems.
Palabras clave: Big Data
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 851.9Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution 2.5 Unported (CC BY 2.5)
Identificadores
URI: http://hdl.handle.net/11336/265127
URL: https://mesopotamian.press/journals/index.php/bigdata/article/view/429
DOI: http://dx.doi.org/10.58496/MJBD/2024/006
Colecciones
Articulos(CCT - SAN LUIS)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - SAN LUIS
Citación
Al Qaysi, Z. T.; Suzani, M. S; Abdul Rashid, Nazre Bin; Ismail, Reem D.; Ahmed, M.A.; et al.; Generalized Time Domain Prediction Model for Motor Imagery-based Wheelchair Movement Control; Mesopotamian Academic Press; Mesopotamian Journal of Big Data; 2024; 6-2024; 68-81
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES