Mostrar el registro sencillo del ítem
dc.contributor.author
Giro, João Paulo
dc.contributor.author
Zanella, Alain
dc.contributor.author
Mourgues, Regis
dc.contributor.author
Galland, Olivier

dc.contributor.author
Martin Ramirez, Mariano Esteban

dc.date.available
2025-07-02T12:17:14Z
dc.date.issued
2025-08
dc.identifier.citation
Giro, João Paulo; Zanella, Alain; Mourgues, Regis; Galland, Olivier; Martin Ramirez, Mariano Esteban; A novel adaptable analog material for simulating transversely isotropic rocks: mechanical properties and applications; Pergamon-Elsevier Science Ltd; International Journal Of Rock Mechanics And Mining Sciences; 192; 8-2025; 1-17
dc.identifier.issn
1365-1609
dc.identifier.uri
http://hdl.handle.net/11336/265015
dc.description.abstract
Transversely isotropic rocks (TIRs) are widespread in geological formations, and understanding their mechanical behavior is crucial for geotechnical and geoengineering applications. This study presents the development of a novel analog material that reproduces the directional mechanical properties of TIRs. The material is composed of quartz sand, mica flakes, and gelatin in adjustable proportions, allowing control over strength and stiffness anisotropy. Uniaxial compressive strength (UCS) and direct shear tests were conducted to evaluate mechanical responses across different anisotropy angles. Results show that the analog material replicates key features of natural TIRs, including directional variations in strength and fracture modes. In UCS tests, the anisotropy angle (β) governs the transition between tensile and shear failure. In direct shear tests, the orientation angle (α) significantly affects shear strength. Higher gelatin concentrations increase cohesion and Young´s modulus without changing the internal friction angle, while mica content reduces overall strength and stiffness. Comparisons with published data on sedimentary and metamorphic rocks confirm the mechanical representativeness of the material. Its simplicity, tunability, and reproducibility make it a useful tool for scaled physical modeling of anisotropic rock behavior in the laboratory. This approach supports the experimental investigation of deformation and failure mechanisms in layered rock masses under controlled conditions.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Pergamon-Elsevier Science Ltd

dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/
dc.subject
Anisotropy
dc.subject
Rocks Analogs Materials
dc.subject
Physical Modelling
dc.subject
Laboratory Tests
dc.subject.classification
Otras Ingenierías y Tecnologías

dc.subject.classification
Otras Ingenierías y Tecnologías

dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS

dc.title
A novel adaptable analog material for simulating transversely isotropic rocks: mechanical properties and applications
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2025-06-30T15:07:16Z
dc.journal.volume
192
dc.journal.pagination
1-17
dc.journal.pais
Estados Unidos

dc.description.fil
Fil: Giro, João Paulo. Le Mans Université.; Francia
dc.description.fil
Fil: Zanella, Alain. Le Mans Université.; Francia
dc.description.fil
Fil: Mourgues, Regis. Le Mans Université.; Francia
dc.description.fil
Fil: Galland, Olivier. University Of Oslo. Faculty Of Mathematics And Natural Science; Noruega
dc.description.fil
Fil: Martin Ramirez, Mariano Esteban. YPF - Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.journal.title
International Journal Of Rock Mechanics And Mining Sciences

dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S1365160925001224
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.ijrmms.2025.106145
Archivos asociados