Mostrar el registro sencillo del ítem

dc.contributor.author
Giro, João Paulo  
dc.contributor.author
Zanella, Alain  
dc.contributor.author
Mourgues, Regis  
dc.contributor.author
Galland, Olivier  
dc.contributor.author
Martin Ramirez, Mariano Esteban  
dc.date.available
2025-07-02T12:17:14Z  
dc.date.issued
2025-08  
dc.identifier.citation
Giro, João Paulo; Zanella, Alain; Mourgues, Regis; Galland, Olivier; Martin Ramirez, Mariano Esteban; A novel adaptable analog material for simulating transversely isotropic rocks: mechanical properties and applications; Pergamon-Elsevier Science Ltd; International Journal Of Rock Mechanics And Mining Sciences; 192; 8-2025; 1-17  
dc.identifier.issn
1365-1609  
dc.identifier.uri
http://hdl.handle.net/11336/265015  
dc.description.abstract
Transversely isotropic rocks (TIRs) are widespread in geological formations, and understanding their mechanical behavior is crucial for geotechnical and geoengineering applications. This study presents the development of a novel analog material that reproduces the directional mechanical properties of TIRs. The material is composed of quartz sand, mica flakes, and gelatin in adjustable proportions, allowing control over strength and stiffness anisotropy. Uniaxial compressive strength (UCS) and direct shear tests were conducted to evaluate mechanical responses across different anisotropy angles. Results show that the analog material replicates key features of natural TIRs, including directional variations in strength and fracture modes. In UCS tests, the anisotropy angle (β) governs the transition between tensile and shear failure. In direct shear tests, the orientation angle (α) significantly affects shear strength. Higher gelatin concentrations increase cohesion and Young´s modulus without changing the internal friction angle, while mica content reduces overall strength and stiffness. Comparisons with published data on sedimentary and metamorphic rocks confirm the mechanical representativeness of the material. Its simplicity, tunability, and reproducibility make it a useful tool for scaled physical modeling of anisotropic rock behavior in the laboratory. This approach supports the experimental investigation of deformation and failure mechanisms in layered rock masses under controlled conditions.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Pergamon-Elsevier Science Ltd  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/  
dc.subject
Anisotropy  
dc.subject
Rocks Analogs Materials  
dc.subject
Physical Modelling  
dc.subject
Laboratory Tests  
dc.subject.classification
Otras Ingenierías y Tecnologías  
dc.subject.classification
Otras Ingenierías y Tecnologías  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
A novel adaptable analog material for simulating transversely isotropic rocks: mechanical properties and applications  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2025-06-30T15:07:16Z  
dc.journal.volume
192  
dc.journal.pagination
1-17  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: Giro, João Paulo. Le Mans Université.; Francia  
dc.description.fil
Fil: Zanella, Alain. Le Mans Université.; Francia  
dc.description.fil
Fil: Mourgues, Regis. Le Mans Université.; Francia  
dc.description.fil
Fil: Galland, Olivier. University Of Oslo. Faculty Of Mathematics And Natural Science; Noruega  
dc.description.fil
Fil: Martin Ramirez, Mariano Esteban. YPF - Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.journal.title
International Journal Of Rock Mechanics And Mining Sciences  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S1365160925001224  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.ijrmms.2025.106145