Mostrar el registro sencillo del ítem
dc.contributor.author
Bruzzone, Octavio Augusto
dc.contributor.author
Hurtado, Santiago Ignacio
dc.contributor.author
Perri, Daiana Vanesa
dc.contributor.author
Maddio, Rafael Adrian
dc.contributor.author
Sello, Mario Eugenio
dc.contributor.author
Easdale, Marcos Horacio
dc.date.available
2025-06-30T11:03:45Z
dc.date.issued
2024-05
dc.identifier.citation
Bruzzone, Octavio Augusto; Hurtado, Santiago Ignacio; Perri, Daiana Vanesa; Maddio, Rafael Adrian; Sello, Mario Eugenio; et al.; Tracking states and transitions in semiarid rangelands: A spatiotemporal archetypal analysis of productivity dynamics using wavelets; Elsevier Science Inc.; Remote Sensing of Environment; 308; 5-2024; 1-16
dc.identifier.issn
0034-4257
dc.identifier.uri
http://hdl.handle.net/11336/264720
dc.description.abstract
Climate change poses challenges in classifying ecosystem dynamics, as they are influenced by shifting dynamics resulting from changes in climate forces and meteorological variables, including temperature and water availability. To address this, our study presents a novel approach using Continuous Wavelet Transform (CWT) and power spectrum analysis to classify vegetation dynamics, considering the time-dependent variability of ecosystem frequencies. We applied our method to centred and standardized MODIS NDVI time series for the period 2000–2021, using an experimental field station in northern Patagonia as a case study. By performing a continuous wavelet transform on the data for each pixel, we obtained instantaneous power spectra, capturing variability across different dates and pixels. These spectrums were then consolidated into a comprehensive database, and subsequently classified using archetypal analysis. We identified a convex combination of archetypal spectrums that best represented the entire power spectrum database. Mapping the resulting archetypes and their weights in both space and time allowed us to explore pixels' variations in archetype weights in relation to factors such as time, topography, and climate. In addition, to examine the potential relationship between the NDVI time series and climate drivers, we computed the Average Cross-Wavelet Power Spectrum (ACWPS) to different climatic indices. Three archetypes were sufficient to explain the majority of power spectrum variability in the study area. These archetypes exhibited distinctive characteristics: 1) medium-frequency variability (2–4 years), 2) low-frequency variability (>4 years), and 3) an annual (i.e. seasonal) cycle with low-frequency variability. Spatially, the first two archetypes were predominantly observed in highland steppes, while the third archetype prevailed in lowland areas associated with meadows. At the beginning of the studied period, Archetypes 1 and 3 dominated, but after the Puyehue-Cordón Caulle Volcanic Complex eruption in 2011 their prominence diminished, and Archetype 2 became more prevalent in the whole study area. Finally, all three NDVI series representative of archetypes showed a relative peak at approximately four years, which could be linked to the Indian Ocean Dipole variability. These results highlight an abrupt shift in the system's behaviour, primarily related to changes in variability distribution rather than mean values. This disturbance-induced transition aligns with the theory of state and transitions in ecological system dynamics. We propose that the states in this model are not fixed but represent alternative dynamic behaviours, akin to different types of limit cycles. Consequently, employing a wavelet analysis-based classification method provides a robust means of studying and understanding such variability and transitions, thereby offering clarity and comprehension of ecosystem states. Notably, this methodology proves particularly effective for large databases of detailed time series.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier Science Inc.
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Shot noise
dc.subject
Noise-induced transition
dc.subject
Limit cycles
dc.subject
Classification
dc.subject
Steppe
dc.subject
Semi-arid environments
dc.subject
States and transitions model
dc.subject.classification
Investigación Climatológica
dc.subject.classification
Ciencias de la Tierra y relacionadas con el Medio Ambiente
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.subject.classification
Agricultura
dc.subject.classification
Agricultura, Silvicultura y Pesca
dc.subject.classification
CIENCIAS AGRÍCOLAS
dc.title
Tracking states and transitions in semiarid rangelands: A spatiotemporal archetypal analysis of productivity dynamics using wavelets
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2025-06-25T11:58:52Z
dc.journal.volume
308
dc.journal.pagination
1-16
dc.journal.pais
Estados Unidos
dc.description.fil
Fil: Bruzzone, Octavio Augusto. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Patagonia Norte. Estación Experimental Agropecuaria San Carlos de Bariloche. Instituto de Investigaciones Forestales y Agropecuarias Bariloche. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones Forestales y Agropecuarias Bariloche; Argentina
dc.description.fil
Fil: Hurtado, Santiago Ignacio. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Patagonia Norte. Estación Experimental Agropecuaria San Carlos de Bariloche. Instituto de Investigaciones Forestales y Agropecuarias Bariloche. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones Forestales y Agropecuarias Bariloche; Argentina
dc.description.fil
Fil: Perri, Daiana Vanesa. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Patagonia Norte. Estación Experimental Agropecuaria San Carlos de Bariloche. Instituto de Investigaciones Forestales y Agropecuarias Bariloche. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones Forestales y Agropecuarias Bariloche; Argentina
dc.description.fil
Fil: Maddio, Rafael Adrian. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Patagonia Norte. Estación Experimental Agropecuaria San Carlos de Bariloche. Instituto de Investigaciones Forestales y Agropecuarias Bariloche. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones Forestales y Agropecuarias Bariloche; Argentina
dc.description.fil
Fil: Sello, Mario Eugenio. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Patagonia Norte. Estación Experimental Agropecuaria San Carlos de Bariloche. Instituto de Investigaciones Forestales y Agropecuarias Bariloche. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones Forestales y Agropecuarias Bariloche; Argentina
dc.description.fil
Fil: Easdale, Marcos Horacio. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Patagonia Norte. Estación Experimental Agropecuaria San Carlos de Bariloche. Instituto de Investigaciones Forestales y Agropecuarias Bariloche. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones Forestales y Agropecuarias Bariloche; Argentina
dc.journal.title
Remote Sensing of Environment
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0034425724002219
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.1016/j.rse.2024.114203
Archivos asociados