Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Optimising microstructural characterisation of white-matter phantoms: impact of gradient waveform modulation on Non-uniform Oscillating Gradient Spin-Echo sequences

Gimenez, Melisa Lucía; Jiménez, Pablo JavierIcon ; Pedraza Pérez, Leonardo AndrésIcon ; Betancourth Giraldo, Diana MariaIcon ; Zwick, Analía ElizabethIcon ; Alvarez, Gonzalo AgustinIcon
Fecha de publicación: 05/2024
Editorial: Cornell University
Revista: arXiv
ISSN: 2331-8422
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Biotecnologías de la Salud

Resumen

Changes in the nervous system due to neurological diseases take place at very small spatial scales, on the order of the micro and nanometers. Developing non-invasive imaging methods for obtaining this microscopic information as quantitative biomarkers is therefore crucial for improved medical diagnosis. In this context, diffusion weighted magnetic resonance imaging has shown significant advances in revealing tissue microstructural features by probing molecular diffusion processes. Implementing modulated gradient spin-echo sequences allows monitoring time-dependent diffusion processes to reveal such detailed information. In particular, one of those sequences termed Non-uniform Oscillating Gradient Spin-Echo (NOGSE), has shown to selectively characterise microstructure sizes by generating an image contrast based on a signal decay-shift rather than on the conventionally used signal decay rate. In this work, we prove that such decay-shift is more pronounced with instantaneous switches of the sign of the magnetic field gradient strength. As fast gradient ramps need to be avoided in clinical settings, due to potential patient discomfort and artefacts in imaging, we evaluate the method’s efficacy for estimating microstructure sizes using both idealised, sharp gradient modulations and more realistic, smooth modulations. In this more realistic scenario we find that the signal decay-shift might be lost as the diffusion time increases, likely hindering the accurate estimation of microstructural characteristics. We demonstrate, by a combination of numerical simulations, information theory analysis and proof-of-principle experiments with white-matter phantoms, that optimal sequence design to estimate microstructure size distributions can be achieved using either sharp or smooth gradient spin-echo modulations. This approach simplifies the translation of the NOGSE method for its use in clinical settings.
Palabras clave: MRI , CEREBRO , TEJIDOS
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 5.367Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/264611
DOI: https://doi.org/10.48550/arXiv.2406.02568
Colecciones
Articulos (UE-INN - NODO BARILOCHE)
Articulos de UNIDAD EJECUTORA INSTITUTO DE NANOCIENCIA Y NANOTECNOLOGIA - NODO BARILOCHE
Citación
Gimenez, Melisa Lucía; Jiménez, Pablo Javier; Pedraza Pérez, Leonardo Andrés; Betancourth Giraldo, Diana Maria; Zwick, Analía Elizabeth; et al.; Optimising microstructural characterisation of white-matter phantoms: impact of gradient waveform modulation on Non-uniform Oscillating Gradient Spin-Echo sequences; Cornell University; arXiv; 5-2024; 1-18
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES