Mostrar el registro sencillo del ítem

dc.contributor.author
Bamonte, Marcos F.  
dc.contributor.author
Risk, Marcelo  
dc.contributor.author
Herrero, Victor  
dc.date.available
2025-06-19T11:52:13Z  
dc.date.issued
2024-08  
dc.identifier.citation
Bamonte, Marcos F.; Risk, Marcelo; Herrero, Victor; Determining the Optimal Window Duration to Enhance Emotion Recognition Based on Galvanic Skin Response and Photoplethysmography Signals; MDPI; Electronics; 13; 16; 8-2024; 1-18  
dc.identifier.issn
2079-9292  
dc.identifier.uri
http://hdl.handle.net/11336/264285  
dc.description.abstract
Automatic emotion recognition using portable sensors is gaining attention due to its potential use in real-life scenarios. Existing studies have not explored Galvanic Skin Response and Photoplethysmography sensors exclusively for emotion recognition using nonlinear features with machine learning (ML) classifiers such as Random Forest, Support Vector Machine, Gradient Boosting Machine, K-Nearest Neighbor, and Decision Tree. In this study, we proposed a genuine window sensitivity analysis on a continuous annotation dataset to determine the window duration and percentage of overlap that optimize the classification performance using ML algorithms and nonlinear features, namely, Lyapunov Exponent, Approximate Entropy, and Poincaré indices. We found an optimum window duration of 3 s with 50% overlap and achieved accuracies of 0.75 and 0.74 for both arousal and valence, respectively. In addition, we proposed a Strong Labeling Scheme that kept only the extreme values of the labels, which raised the accuracy score to 0.94 for arousal. Under certain conditions mentioned, traditional ML models offer a good compromise between performance and low computational cost. Our results suggest that well-known ML algorithms can still contribute to the field of emotion recognition, provided that window duration, overlap percentage, and nonlinear features are carefully selected.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
MDPI  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
emotion recognition  
dc.subject
machine learning  
dc.subject
 photoplethysmography  
dc.subject
galvanic skin response  
dc.subject.classification
Otras Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información  
dc.subject.classification
Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Determining the Optimal Window Duration to Enhance Emotion Recognition Based on Galvanic Skin Response and Photoplethysmography Signals  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2025-06-17T10:44:21Z  
dc.journal.volume
13  
dc.journal.number
16  
dc.journal.pagination
1-18  
dc.journal.pais
Suiza  
dc.description.fil
Fil: Bamonte, Marcos F.. Universidad Austral. Facultad de Ingenieria. Laboratorio de Investigacion Desarrollo y Transferencia. - Comision de Investigaciones Cientificas de la Provincia de Buenos Aires. Laboratorio de Investigacion Desarrollo y Transferencia.; Argentina  
dc.description.fil
Fil: Risk, Marcelo. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Houssay. Instituto de Medicina Traslacional E Ingenieria Biomedica. - Hospital Italiano. Instituto de Medicina Traslacional E Ingenieria Biomedica. - Instituto Universitario Hospital Italiano de Buenos Aires. Instituto de Medicina Traslacional E Ingenieria Biomedica.; Argentina  
dc.description.fil
Fil: Herrero, Victor. Universidad Austral. Facultad de Ingenieria. Laboratorio de Investigacion Desarrollo y Transferencia. - Comision de Investigaciones Cientificas de la Provincia de Buenos Aires. Laboratorio de Investigacion Desarrollo y Transferencia.; Argentina  
dc.journal.title
Electronics  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2079-9292/13/16/3333  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.3390/electronics13163333