Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

The smallest electrochemical bubbles

Gadea, Esteban DavidIcon ; Pérez Sirkin, Yamila AnahíIcon ; Molinero, Valeria; Scherlis Perel, Damian ArielIcon
Fecha de publicación: 10/2024
Editorial: National Academy of Sciences
Revista: Proceedings of the National Academy of Sciences of The United States of America
ISSN: 0027-8424
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Físico-Química, Ciencia de los Polímeros, Electroquímica

Resumen

Many of the relevant electrochemical processes in the context of catalysis or energyconversion and storage, entail the production of gases. This often implicates thenucleation of bubbles at the interface, with the concomitant blockage of theelectroactive area leading to overpotentials and Ohmic drop. Nanoelectrodes have beenenvisioned as assets to revert this effect, by inhibiting bubble formation. Experimentsshow, however, that nanobubbles nucleate and attach to nanoscale electrodes, imposinga limit to the current, which turns out to be independent of size and applied potential ina wide range from 3 nm to tenths of microns. Here we investigate the potential-currentresponse for disk electrodes of diameters down to a single-atom, employing molecularsimulations including electrochemical generation of gas. Our analysis reveals thatnanoelectrodes of 1 nm can offer twice as much current as that delivered by electrodeswith areas four orders of magnitude larger at the same bias. This boost in the extractedcurrent is a consequence of the destabilization of the gas phase. The grand potentialof surface nanobubbles shows they can not reach a thermodynamically stable stateon supports below 2 nm. As a result, the electroactive area becomes accessible to thesolution and the current turns out to be sensitive to the electrode radius. In this way,our simulations establish that there is an optimal size for the nanoelectrodes, in betweenthe single-atom and ∼3 nm, that optimizes the gas production.
Palabras clave: ELECTROCHEMISTRY , NANOELECTRODES , CATALYSIS , MD-kMC
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 25.32Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/264039
URL: https://pnas.org/doi/10.1073/pnas.2406956121
DOI: http://dx.doi.org/10.1073/pnas.2406956121
Colecciones
Articulos(INQUIMAE)
Articulos de INST.D/QUIM FIS D/L MATERIALES MEDIOAMB Y ENERGIA
Citación
Gadea, Esteban David; Pérez Sirkin, Yamila Anahí; Molinero, Valeria; Scherlis Perel, Damian Ariel; The smallest electrochemical bubbles; National Academy of Sciences; Proceedings of the National Academy of Sciences of The United States of America; 121; 41; 10-2024; 1-7
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES