Mostrar el registro sencillo del ítem
dc.contributor.author
Boente Boente, Graciela Lina
dc.contributor.author
Kudraszow, Nadia Laura
dc.date.available
2025-06-11T10:23:12Z
dc.date.issued
2021
dc.identifier.citation
A robust smoothed approach to functional canonical correlation analysis; International Conference on Robust Statistics; Viena; Austria; 2021; 21-22
dc.identifier.uri
http://hdl.handle.net/11336/263845
dc.description.abstract
In recent years, data collected in the form of functions or curves received considerableattention in fields such as chemometrics, image recognition and spectroscopy, amongothers. These data are known in the literature as functional data, see [3] for a completeoverview. Functional data are intrinsically infinite–dimensional and, as mentioned forinstance in [4], this infinite–dimensional structure is indeed a source of information. Forthat reason, even when recorded at a finite grid of points, functional observations shouldbe considered as random elements of some functional space more than multivariateobservations. In this manner, some of the theoretical and numerical challenges posed bythe high dimensionality may be solved. This framework led to the extension of someclassical multivariate analysis concepts, such as dimension reduction techniques, to thecontext of functional data, usually through some regularization tool.In this talk, we will focus on functional canonical correlation analysis, where data consistof pairs of random curves and the analysis tries to identify and quantify the relationbetween the observed functions. Under a Gaussian model, [2] showed that the naturalextension of multivariate estimators to the functional scenario fails, motivating theintroduction of regularization techniques which may combine smoothing through apenalty term and/or projection of the observed curves on a finite–dimensional linearspace generated by a given basis, see [1] and [3]. The classical estimators use the Pearsoncorrelation as measure of the association between the observed functions and for thatreason they are sensitive to outliers.To provide robust estimators for the first functional canonical correlation and directions,we will introduce two families of robust consistent estimators that combine robustassociation and scale measures with basis expansion and/or penalizations as a regularization tool. Both families turn out to be consistent under mild assumptions. Wewill present the results of a numerical study that shows that, as expected, the robustmethod outperforms the existing classical procedure when the data are contaminated Areal data example will also be presented.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
International Association for Statistical Computing
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
FUNCTIONAL CANONICAL CORRELATION ANALYSIS
dc.subject
ROBUST ESTIMATION
dc.subject
SMOOTHING TECHNIQUES
dc.subject.classification
Estadística y Probabilidad
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
A robust smoothed approach to functional canonical correlation analysis
dc.type
info:eu-repo/semantics/publishedVersion
dc.type
info:eu-repo/semantics/conferenceObject
dc.type
info:ar-repo/semantics/documento de conferencia
dc.date.updated
2022-11-09T16:46:33Z
dc.journal.pagination
21-22
dc.journal.pais
Austria
dc.journal.ciudad
Viena
dc.description.fil
Fil: Boente Boente, Graciela Lina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
dc.description.fil
Fil: Kudraszow, Nadia Laura. Universidad Nacional de La Plata; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://cstat.tuwien.ac.at/filz/icors2020/BOA1crossref.pdf
dc.conicet.rol
Autor
dc.conicet.rol
Autor
dc.coverage
Internacional
dc.type.subtype
Conferencia
dc.description.nombreEvento
International Conference on Robust Statistics
dc.date.evento
2021-09-20
dc.description.ciudadEvento
Viena
dc.description.paisEvento
Austria
dc.type.publicacion
Book
dc.description.institucionOrganizadora
Universidad Técnica de Viena
dc.description.institucionOrganizadora
International Association for Statistical Computing
dc.source.libro
Book of Abstracts: International Conference on Robust Statistics
dc.date.eventoHasta
2021-09-24
dc.type
Conferencia
Archivos asociados