Mostrar el registro sencillo del ítem

dc.contributor.author
Boente Boente, Graciela Lina  
dc.contributor.author
Kudraszow, Nadia Laura  
dc.date.available
2025-06-11T10:23:12Z  
dc.date.issued
2021  
dc.identifier.citation
A robust smoothed approach to functional canonical correlation analysis; International Conference on Robust Statistics; Viena; Austria; 2021; 21-22  
dc.identifier.uri
http://hdl.handle.net/11336/263845  
dc.description.abstract
In recent years, data collected in the form of functions or curves received considerableattention in fields such as chemometrics, image recognition and spectroscopy, amongothers. These data are known in the literature as functional data, see [3] for a completeoverview. Functional data are intrinsically infinite–dimensional and, as mentioned forinstance in [4], this infinite–dimensional structure is indeed a source of information. Forthat reason, even when recorded at a finite grid of points, functional observations shouldbe considered as random elements of some functional space more than multivariateobservations. In this manner, some of the theoretical and numerical challenges posed bythe high dimensionality may be solved. This framework led to the extension of someclassical multivariate analysis concepts, such as dimension reduction techniques, to thecontext of functional data, usually through some regularization tool.In this talk, we will focus on functional canonical correlation analysis, where data consistof pairs of random curves and the analysis tries to identify and quantify the relationbetween the observed functions. Under a Gaussian model, [2] showed that the naturalextension of multivariate estimators to the functional scenario fails, motivating theintroduction of regularization techniques which may combine smoothing through apenalty term and/or projection of the observed curves on a finite–dimensional linearspace generated by a given basis, see [1] and [3]. The classical estimators use the Pearsoncorrelation as measure of the association between the observed functions and for thatreason they are sensitive to outliers.To provide robust estimators for the first functional canonical correlation and directions,we will introduce two families of robust consistent estimators that combine robustassociation and scale measures with basis expansion and/or penalizations as a regularization tool. Both families turn out to be consistent under mild assumptions. Wewill present the results of a numerical study that shows that, as expected, the robustmethod outperforms the existing classical procedure when the data are contaminated Areal data example will also be presented.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
International Association for Statistical Computing  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
FUNCTIONAL CANONICAL CORRELATION ANALYSIS  
dc.subject
ROBUST ESTIMATION  
dc.subject
SMOOTHING TECHNIQUES  
dc.subject.classification
Estadística y Probabilidad  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
A robust smoothed approach to functional canonical correlation analysis  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.type
info:eu-repo/semantics/conferenceObject  
dc.type
info:ar-repo/semantics/documento de conferencia  
dc.date.updated
2022-11-09T16:46:33Z  
dc.journal.pagination
21-22  
dc.journal.pais
Austria  
dc.journal.ciudad
Viena  
dc.description.fil
Fil: Boente Boente, Graciela Lina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina  
dc.description.fil
Fil: Kudraszow, Nadia Laura. Universidad Nacional de La Plata; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://cstat.tuwien.ac.at/filz/icors2020/BOA1crossref.pdf  
dc.conicet.rol
Autor  
dc.conicet.rol
Autor  
dc.coverage
Internacional  
dc.type.subtype
Conferencia  
dc.description.nombreEvento
International Conference on Robust Statistics  
dc.date.evento
2021-09-20  
dc.description.ciudadEvento
Viena  
dc.description.paisEvento
Austria  
dc.type.publicacion
Book  
dc.description.institucionOrganizadora
Universidad Técnica de Viena  
dc.description.institucionOrganizadora
International Association for Statistical Computing  
dc.source.libro
Book of Abstracts: International Conference on Robust Statistics  
dc.date.eventoHasta
2021-09-24  
dc.type
Conferencia