Mostrar el registro sencillo del ítem
dc.contributor.author
Segura, C.
dc.contributor.author
Neal, A. L.
dc.contributor.author
Castro Sardiña, Leticia Sabrina
dc.contributor.author
Harris, P.
dc.contributor.author
Rivero, M. J.
dc.contributor.author
Cardenas, L. M.
dc.contributor.author
Irisarri, Jorge Gonzalo Nicolás
dc.date.available
2025-06-09T11:08:37Z
dc.date.issued
2024-08
dc.identifier.citation
Segura, C.; Neal, A. L.; Castro Sardiña, Leticia Sabrina; Harris, P.; Rivero, M. J.; et al.; Comparison of direct and indirect soil organic carbon prediction at farm field scale; Academic Press Ltd - Elsevier Science Ltd; Journal of Environmental Management; 365; 8-2024; 1-12
dc.identifier.issn
0301-4797
dc.identifier.uri
http://hdl.handle.net/11336/263700
dc.description.abstract
To advance sustainable and resilient agricultural management policies, especially during land use changes, it is imperative to monitor, report, and verify soil organic carbon (SOC) content rigorously to inform its stock. However, conventional methods often entail challenging, time-consuming, and costly direct soil measurements. Integrating data from long-term experiments (LTEs) with freely available remote sensing (RS) techniques presents exciting prospects for assessing SOC temporal and spatial change. The objective of this study was to develop a low-cost, field-based statistical model that could be used as a decision-making aid to understand the temporal and spatial variation of SOC content in temperate farmland under different land use and management. A ten-year dataset from the North Wyke Farm Platform, a 20-field, LTE system established in southwestern England in 2010, was used as a case study in conjunction with an RS dataset. Linear, additive and mixed regression models were compared for predicting SOC content based upon combinations of environmental variables that are freely accessible (termed open) and those that require direct measurement or farmer questionnaires (termed closed). These included an RS-derived Ecosystem Services Provision Index (ESPI), topography (slope, aspect), weather (temperature, precipitation), soil (soil units, total nitrogen [TN], pH), and field management practices. Additive models (specifically Generalised Additive Models (GAMs)) were found to be the most effective at predicting space-time SOC variability. When the combined open and closed factors (excluding TN) were considered, significant predictors of SOC were: management related to ploughing being the most important predictor, soil unit (class), aspect, and temperature (GAM fit with a normalised RMSE = 9.1%, equivalent to 0.4% of SOC content). The relative strength of the best-fitting GAM with open data only, which included ESPI, aspect, and slope (normalised RMSE = 13.0%, equivalent to 0.6% of SOC content), suggested that this more practical and costeffective model enables sufficiently accurate prediction of SOC.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Academic Press Ltd - Elsevier Science Ltd
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/
dc.subject
COS
dc.subject
ESPI
dc.subject
Ecosystem services provision index
dc.subject
Open data
dc.subject.classification
Ciencias del Suelo
dc.subject.classification
Agricultura, Silvicultura y Pesca
dc.subject.classification
CIENCIAS AGRÍCOLAS
dc.title
Comparison of direct and indirect soil organic carbon prediction at farm field scale
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2025-06-04T11:47:44Z
dc.journal.volume
365
dc.journal.pagination
1-12
dc.journal.pais
Estados Unidos
dc.description.fil
Fil: Segura, C.. No especifíca;
dc.description.fil
Fil: Neal, A. L.. No especifíca;
dc.description.fil
Fil: Castro Sardiña, Leticia Sabrina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; Argentina
dc.description.fil
Fil: Harris, P.. No especifíca;
dc.description.fil
Fil: Rivero, M. J.. No especifíca;
dc.description.fil
Fil: Cardenas, L. M.. No especifíca;
dc.description.fil
Fil: Irisarri, Jorge Gonzalo Nicolás. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; Argentina
dc.journal.title
Journal of Environmental Management
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S0301479724015597
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.jenvman.2024.121573
Archivos asociados