Mostrar el registro sencillo del ítem

dc.contributor.author
Segura, C.  
dc.contributor.author
Neal, A. L.  
dc.contributor.author
Castro Sardiña, Leticia Sabrina  
dc.contributor.author
Harris, P.  
dc.contributor.author
Rivero, M. J.  
dc.contributor.author
Cardenas, L. M.  
dc.contributor.author
Irisarri, Jorge Gonzalo Nicolás  
dc.date.available
2025-06-09T11:08:37Z  
dc.date.issued
2024-08  
dc.identifier.citation
Segura, C.; Neal, A. L.; Castro Sardiña, Leticia Sabrina; Harris, P.; Rivero, M. J.; et al.; Comparison of direct and indirect soil organic carbon prediction at farm field scale; Academic Press Ltd - Elsevier Science Ltd; Journal of Environmental Management; 365; 8-2024; 1-12  
dc.identifier.issn
0301-4797  
dc.identifier.uri
http://hdl.handle.net/11336/263700  
dc.description.abstract
To advance sustainable and resilient agricultural management policies, especially during land use changes, it is imperative to monitor, report, and verify soil organic carbon (SOC) content rigorously to inform its stock. However, conventional methods often entail challenging, time-consuming, and costly direct soil measurements. Integrating data from long-term experiments (LTEs) with freely available remote sensing (RS) techniques presents exciting prospects for assessing SOC temporal and spatial change. The objective of this study was to develop a low-cost, field-based statistical model that could be used as a decision-making aid to understand the temporal and spatial variation of SOC content in temperate farmland under different land use and management. A ten-year dataset from the North Wyke Farm Platform, a 20-field, LTE system established in southwestern England in 2010, was used as a case study in conjunction with an RS dataset. Linear, additive and mixed regression models were compared for predicting SOC content based upon combinations of environmental variables that are freely accessible (termed open) and those that require direct measurement or farmer questionnaires (termed closed). These included an RS-derived Ecosystem Services Provision Index (ESPI), topography (slope, aspect), weather (temperature, precipitation), soil (soil units, total nitrogen [TN], pH), and field management practices. Additive models (specifically Generalised Additive Models (GAMs)) were found to be the most effective at predicting space-time SOC variability. When the combined open and closed factors (excluding TN) were considered, significant predictors of SOC were: management related to ploughing being the most important predictor, soil unit (class), aspect, and temperature (GAM fit with a normalised RMSE = 9.1%, equivalent to 0.4% of SOC content). The relative strength of the best-fitting GAM with open data only, which included ESPI, aspect, and slope (normalised RMSE = 13.0%, equivalent to 0.6% of SOC content), suggested that this more practical and costeffective model enables sufficiently accurate prediction of SOC.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Academic Press Ltd - Elsevier Science Ltd  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/  
dc.subject
COS  
dc.subject
ESPI  
dc.subject
Ecosystem services provision index  
dc.subject
Open data  
dc.subject.classification
Ciencias del Suelo  
dc.subject.classification
Agricultura, Silvicultura y Pesca  
dc.subject.classification
CIENCIAS AGRÍCOLAS  
dc.title
Comparison of direct and indirect soil organic carbon prediction at farm field scale  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2025-06-04T11:47:44Z  
dc.journal.volume
365  
dc.journal.pagination
1-12  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: Segura, C.. No especifíca;  
dc.description.fil
Fil: Neal, A. L.. No especifíca;  
dc.description.fil
Fil: Castro Sardiña, Leticia Sabrina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; Argentina  
dc.description.fil
Fil: Harris, P.. No especifíca;  
dc.description.fil
Fil: Rivero, M. J.. No especifíca;  
dc.description.fil
Fil: Cardenas, L. M.. No especifíca;  
dc.description.fil
Fil: Irisarri, Jorge Gonzalo Nicolás. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; Argentina  
dc.journal.title
Journal of Environmental Management  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S0301479724015597  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.jenvman.2024.121573