Mostrar el registro sencillo del ítem

dc.contributor.author
Barragan Medina, Yulianis Paola  
dc.contributor.author
Alvarez, Vera Alejandra  
dc.contributor.author
Mendoza Zélis, Pedro  
dc.contributor.author
Gonzalez, Jimena Soledad  
dc.date.available
2025-06-06T11:59:14Z  
dc.date.issued
2024-08  
dc.identifier.citation
Barragan Medina, Yulianis Paola; Alvarez, Vera Alejandra; Mendoza Zélis, Pedro; Gonzalez, Jimena Soledad; Ecofriendly magnetic gels beads based on carboxymethylcellulose and iron oxides for diclofenac adsorption; Springer; Discover Chemical Engineering; 4; 1; 8-2024; 1-16  
dc.identifier.issn
2730-7700  
dc.identifier.uri
http://hdl.handle.net/11336/263605  
dc.description.abstract
This work presents the development of eco-friendly ferrogel beads that can effectively remove emerging pollutant diclofenac (DFC) from wastewater. These beads are composed of natural polysaccharide/iron oxide. The structure and properties of the ferrogel beads were studied using various techniques. Scanning electron microscopy images revealed porosity nature of hydrogel and ferrogel beads due to the incorporation of magnetic nanoparticles (MNPs). TEM images indicates the diameter size of MNPs around 8.3 ± 2 nm. The addition of MNPs resulted in enhanced porosity and visible MNP agglomerates. Fourier-transform infrared spectroscopy confirmed interactions between the polymer (carboxymethyl cellulose, CMC) and iron oxide nanoparticles, as indicated by characteristic peaks associated with both compounds. X-ray diffraction patterns indicated that MNPs had a crystalline nature (appears the characteristic peaks at 35.6°, 43.3° and 53.7° were corresponding to the (3 1 1), (4 0 0), (4 2 2)) while CMC hydrogel exhibited an amorphous structure.The behavior of fresh and dried beads was compared, revealing that drying increased crosslinking, particularly in the presence of MNPs. This led to a reduction in the swelling percentage of ferrogels (154% at 23 °C in water) when compared to hydrogels (581% at 23 °C in water). Magnetic properties analysis using a vibrating sample magnetometer demonstrated a Langevin-type response for NMPs dispersions, they showed no coercivity, and the saturation magnetization was 47(3) emu/g, in the case of ferrogels beads, the saturation magnetization is 3.8(2) emu/g, indicating a proportion of 8% p/p of nanoparticles relative to the dried beads.Adsorption studies showed that DCF is slowly adsorbed into the beads after 500 min, reaching 50% in the lowest DFC concentration (10 mg/L), 75% in 20 mg/L, 83% in 30 mg/L and 30% in the highest DFC concentration solution (2000 mg/L), the kinetics of DFC adsorption onto ferrogel beads followed a pseudo-second-order and intraparticle diffusion model, indicating physical and chemical interactions as the controlling factor. Adsorption isotherm studies provided insights into the adsorption mechanism and capacity, which are crucial for optimizing adsorbent performance. It was found that the Temkin isotherm shows a better fit.Overall, these findings suggest that ferrogel beads have great potential for environmental applications in pollutant removal due to their high DFC adsorption capacity (qe = 666.7 mg/g), sustainability through reusability, and promising magnetic recovery post-adsorption capabilities.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Springer  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Ferrogels  
dc.subject
Hydrogels  
dc.subject
diclofenac adsorption  
dc.subject
envioremnt  
dc.subject.classification
Compuestos  
dc.subject.classification
Ingeniería de los Materiales  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Ecofriendly magnetic gels beads based on carboxymethylcellulose and iron oxides for diclofenac adsorption  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2025-06-04T11:37:51Z  
dc.journal.volume
4  
dc.journal.number
1  
dc.journal.pagination
1-16  
dc.journal.pais
Suiza  
dc.description.fil
Fil: Barragan Medina, Yulianis Paola. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina  
dc.description.fil
Fil: Alvarez, Vera Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina  
dc.description.fil
Fil: Mendoza Zélis, Pedro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina  
dc.description.fil
Fil: Gonzalez, Jimena Soledad. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina  
dc.journal.title
Discover Chemical Engineering  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/10.1007/s43938-024-00060-x  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s43938-024-00060-x