Mostrar el registro sencillo del ítem
dc.contributor.author
Monascal Rodríguez, Yeljair Enrique
dc.contributor.author
Badenes, Maria Paula
dc.date.available
2025-06-06T11:11:50Z
dc.date.issued
2024-11
dc.identifier.citation
Monascal Rodríguez, Yeljair Enrique; Badenes, Maria Paula; Kinetics and Mechanism of the Thermal Isomerization of Cyclopropane to Propene: A Comprehensive Theoretical Study; American Chemical Society; Journal of Physical Chemistry A; 129; 4; 11-2024; 894-908
dc.identifier.issn
1089-5639
dc.identifier.uri
http://hdl.handle.net/11336/263580
dc.description.abstract
The kinetics of the homogeneous gas-phase thermal isomerization of cyclopropane to propene has been studied theoretically to clarify existing discrepancies regarding the interpretation of its mechanism. High-level ab initio and density functional theory calculations were used to determine the branching ratios of the biradical and carbene reaction channels over wide temperature and pressure ranges. For this, relevant molecular and thermochemical properties of the proposed intermediates and related transition states were computed and compared with literature values. The Arrhenius equation, derived between 400 and 1400 K in the high-pressure limit at the CCSD(T)/6-311++G(3df,3pd)//CCSD/6-311++G(d,p) level of theory, is given by log10(koverall,∞/s–1) = (15.60 ± 0.06) – (65.70 ± 0.17) kcal mol–1 (2.303 RT)−1. This expression is in very good agreement with the available experimental data. According to these results, the biradical pathway is the predominant mechanism, while the carbene pathway contributes 1–2% at higher temperatures. The G4//B3LYP/6-311++G(3df,3pd) and G4//M06-L/6-311++G(3df,3pd) levels showed comparable Arrhenius parameters. Low-pressure limit rate coefficients and falloff curves were also estimated to evaluate the effect of pressure on the reaction. Additionally, the possibility of a concerted path is considered, but calculations showed unstable wave functions, suggesting that this mechanism would not be plausible.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
American Chemical Society
dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
CARBENE COMPOUNDS
dc.subject
ENTHALPY
dc.subject
HYDROCARBONS
dc.subject
MOLECULAR STRUCTURE
dc.subject
TRANSITION STATES
dc.subject.classification
Físico-Química, Ciencia de los Polímeros, Electroquímica
dc.subject.classification
Ciencias Químicas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Kinetics and Mechanism of the Thermal Isomerization of Cyclopropane to Propene: A Comprehensive Theoretical Study
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2025-06-04T11:32:22Z
dc.journal.volume
129
dc.journal.number
4
dc.journal.pagination
894-908
dc.journal.pais
Estados Unidos
dc.description.fil
Fil: Monascal Rodríguez, Yeljair Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina
dc.description.fil
Fil: Badenes, Maria Paula. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina
dc.journal.title
Journal of Physical Chemistry A
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/10.1021/acs.jpca.4c05315
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1021/acs.jpca.4c05315
Archivos asociados