Mostrar el registro sencillo del ítem
dc.contributor.author
Blesio, Germán Gabriel
dc.contributor.author
Manuel, Luis Oscar
dc.contributor.author
Aligia, Armando Angel
dc.date.available
2025-06-03T11:08:31Z
dc.date.issued
2024-12
dc.identifier.citation
Blesio, Germán Gabriel; Manuel, Luis Oscar; Aligia, Armando Angel; Anisotropy-driven topological quantum phase transition in magnetic impurities; IOP Publishing; Materials for Quantum Technology; 4; 4; 12-2024; 1-20
dc.identifier.issn
2633-4356
dc.identifier.uri
http://hdl.handle.net/11336/263274
dc.description.abstract
A few years ago, a topological quantum phase transition (TQPT) has been found in Anderson andKondo 2-channel spin-1 impurity models that include a hard-axis anisotropy term DS2 z with D > 0.The most remarkable manifestation of the TQPT is a jump in the spectral density of localizedelectrons, at the Fermi level, from very high to very low values as D is increased. If the twoconduction channels are equivalent, the transition takes place at the critical anisotropyDc ∼ 2.5 TK, where TK is the Kondo temperature for D = 0. This jump might be important todevelop a molecular transistor. The jump is due to a corresponding one in the Luttinger integral,which has a topological non-trivial value π/2 for D > Dc . Here, we review the main results for thespectral density and highlight the significance of the theory for the interpretation of measurementsconducted on magnetic atoms or molecules on metallic surfaces. In these experiments, where D isheld constant, the energy scale TK is manipulated by some parameters. The resulting variation givesrise to a differential conductance dI/dV, measured by scanning-tunneling spectroscopy, which isconsistent with a TQPT at an intermediate value of TK. For non-equivalent channels and non-zeromagnetic field, the topological phase is lost but still a peculiar behaviour in the spectral density isobtained which agrees with experimental observations. We also show that the theory can beextended to integer spin S > 1 and two-impurity systems. This is also probably true for half-integerspin and non-equivalent channels in some cases.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
IOP Publishing
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/
dc.subject
KONDO EFFECT
dc.subject
TOPOLOGICAL PHASE TRANSITION
dc.subject
MAGNETIC ANISOTROPY
dc.subject
NANOSCOPIC SYSTEMS
dc.subject.classification
Física de los Materiales Condensados
dc.subject.classification
Ciencias Físicas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Anisotropy-driven topological quantum phase transition in magnetic impurities
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2025-06-02T13:14:21Z
dc.journal.volume
4
dc.journal.number
4
dc.journal.pagination
1-20
dc.journal.pais
Reino Unido
dc.journal.ciudad
Londres
dc.description.fil
Fil: Blesio, Germán Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Física de Rosario. Universidad Nacional de Rosario. Instituto de Física de Rosario; Argentina
dc.description.fil
Fil: Manuel, Luis Oscar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Física de Rosario. Universidad Nacional de Rosario. Instituto de Física de Rosario; Argentina
dc.description.fil
Fil: Aligia, Armando Angel. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche | Comisión Nacional de Energía Atómica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche; Argentina
dc.journal.title
Materials for Quantum Technology
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://iopscience.iop.org/article/10.1088/2633-4356/ada081
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1088/2633-4356/ada081
Archivos asociados