Mostrar el registro sencillo del ítem
dc.contributor.author
Karunarathne, Piyal
dc.contributor.author
Reutemann, Anna Verena

dc.contributor.author
James, Jennifer E.
dc.contributor.author
Zhou, Qiujie
dc.contributor.author
Sassone, Agostina Belén

dc.contributor.author
Rose, Laura E.
dc.contributor.author
Hojsgaard, Diego Hernan

dc.date.available
2025-06-02T11:09:39Z
dc.date.issued
2024-12
dc.identifier.citation
Karunarathne, Piyal; Reutemann, Anna Verena; James, Jennifer E.; Zhou, Qiujie; Sassone, Agostina Belén; et al.; Navigating the Challenges in Apomixis Population Genetics: Insights from Past, Present, and Future Perspectives; Taylor & Francis; Critical Reviews In Plant Sciences; 12-2024; 1-32
dc.identifier.issn
0735-2689
dc.identifier.uri
http://hdl.handle.net/11336/263132
dc.description.abstract
Navigating the challenges in apomixis population genetics requires a comprehensive understanding of its unique genetic consequences. This review explores the population genetics of apomixis, comparing sexual and apomictic populations, research challenges, and outlining future directions. Apomictic plants form clonal seeds, and arise from sexual species through hybridization and/or polyploidy. Sexual species generate genetic variation via meiotic recombination, random mating, and gradual accumulation of beneficial mutations. In contrast, apomicts rely on similar mechanisms to generate genetic variation but at a much slower rate, primarily through ´residual´ sexuality. Clonality in apomicts also promotes the accumulation of deleterious mutations. Additionally, recurrent origins of apomicts from sexual progenitors, especially via hybridization contribute to genetic diversity in apomictic populations. These processes, with varying rates of recombination, gene flow, and genotype fixation, lead to distinct genetic structures between sexual and apomictic populations. Reevaluating the evolutionary mechanisms like gene flow, genetic drift, mutation rates, and selection pressures is, therefore, crucial for understanding the processes driving genetic differentiation and genomic structure in apomictic populations. Research on apomixis has advanced from early documentation in the 18th century to modern cytological and genomic approaches. Early theoretical models of apomixis inheritance, adjusted for polyploid and nonsexual populations, provided foundational insights, while recent genome-wide studies have shed light on the genetic basis and evolutionary dynamics of apomixis across taxa. However, significant gaps remain in understanding population-level evolutionary forces shaping apomixis. Future research in comparative genomics of apomictic and sexual relatives will help identify genes and epigenetic marks of adaptive significance. Functional evaluation of genes associated with selective advantages, coupled with specialized bioinformatic tools, will improve our understanding of genotype-phenotype interactions. Integrative approaches combining multi-omics, morphology, and ecological information are key to resolving the population genetic complexities of apomictic taxa and their adaptation and speciation processes. Moreover, machine learning offers promise for analyzing large genomic datasets and uncovering hidden patterns, while interdisciplinary collaborations could translate findings into conservation, agriculture, and biotechnology applications.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Taylor & Francis

dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
apomixis
dc.subject
population genetics
dc.subject
genomics
dc.subject
asexual reproduction
dc.subject
molecular markers
dc.subject.classification
Genética y Herencia

dc.subject.classification
Ciencias Biológicas

dc.subject.classification
CIENCIAS NATURALES Y EXACTAS

dc.title
Navigating the Challenges in Apomixis Population Genetics: Insights from Past, Present, and Future Perspectives
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2025-05-30T13:44:06Z
dc.journal.pagination
1-32
dc.journal.pais
Estados Unidos

dc.journal.ciudad
Londres
dc.description.fil
Fil: Karunarathne, Piyal. Universitat Dusseldorf; Alemania
dc.description.fil
Fil: Reutemann, Anna Verena. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Botánica del Nordeste. Universidad Nacional del Nordeste. Facultad de Ciencias Agrarias. Instituto de Botánica del Nordeste; Argentina
dc.description.fil
Fil: James, Jennifer E.. Uppsala Universitet; Suecia
dc.description.fil
Fil: Zhou, Qiujie. Uppsala Universitet; Suecia
dc.description.fil
Fil: Sassone, Agostina Belén. Leibniz Institute Of Plant Genetics And Crop Plant Research.; Alemania. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Botánica Darwinion. Academia Nacional de Ciencias Exactas, Físicas y Naturales. Instituto de Botánica Darwinion; Argentina
dc.description.fil
Fil: Rose, Laura E.. Heinrich Heine University; Alemania
dc.description.fil
Fil: Hojsgaard, Diego Hernan. Leibniz Institute Of Plant Genetics And Crop Plant Research.; Alemania. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Botánica del Nordeste. Universidad Nacional del Nordeste. Facultad de Ciencias Agrarias. Instituto de Botánica del Nordeste; Argentina
dc.journal.title
Critical Reviews In Plant Sciences

dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.tandfonline.com/doi/full/10.1080/07352689.2024.2440296
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1080/07352689.2024.2440296
Archivos asociados