Mostrar el registro sencillo del ítem

dc.contributor.author
Karunarathne, Piyal  
dc.contributor.author
Reutemann, Anna Verena  
dc.contributor.author
James, Jennifer E.  
dc.contributor.author
Zhou, Qiujie  
dc.contributor.author
Sassone, Agostina Belén  
dc.contributor.author
Rose, Laura E.  
dc.contributor.author
Hojsgaard, Diego Hernan  
dc.date.available
2025-06-02T11:09:39Z  
dc.date.issued
2024-12  
dc.identifier.citation
Karunarathne, Piyal; Reutemann, Anna Verena; James, Jennifer E.; Zhou, Qiujie; Sassone, Agostina Belén; et al.; Navigating the Challenges in Apomixis Population Genetics: Insights from Past, Present, and Future Perspectives; Taylor & Francis; Critical Reviews In Plant Sciences; 12-2024; 1-32  
dc.identifier.issn
0735-2689  
dc.identifier.uri
http://hdl.handle.net/11336/263132  
dc.description.abstract
Navigating the challenges in apomixis population genetics requires a comprehensive understanding of its unique genetic consequences. This review explores the population genetics of apomixis, comparing sexual and apomictic populations, research challenges, and outlining future directions. Apomictic plants form clonal seeds, and arise from sexual species through hybridization and/or polyploidy. Sexual species generate genetic variation via meiotic recombination, random mating, and gradual accumulation of beneficial mutations. In contrast, apomicts rely on similar mechanisms to generate genetic variation but at a much slower rate, primarily through ´residual´ sexuality. Clonality in apomicts also promotes the accumulation of deleterious mutations. Additionally, recurrent origins of apomicts from sexual progenitors, especially via hybridization contribute to genetic diversity in apomictic populations. These processes, with varying rates of recombination, gene flow, and genotype fixation, lead to distinct genetic structures between sexual and apomictic populations. Reevaluating the evolutionary mechanisms like gene flow, genetic drift, mutation rates, and selection pressures is, therefore, crucial for understanding the processes driving genetic differentiation and genomic structure in apomictic populations. Research on apomixis has advanced from early documentation in the 18th century to modern cytological and genomic approaches. Early theoretical models of apomixis inheritance, adjusted for polyploid and nonsexual populations, provided foundational insights, while recent genome-wide studies have shed light on the genetic basis and evolutionary dynamics of apomixis across taxa. However, significant gaps remain in understanding population-level evolutionary forces shaping apomixis. Future research in comparative genomics of apomictic and sexual relatives will help identify genes and epigenetic marks of adaptive significance. Functional evaluation of genes associated with selective advantages, coupled with specialized bioinformatic tools, will improve our understanding of genotype-phenotype interactions. Integrative approaches combining multi-omics, morphology, and ecological information are key to resolving the population genetic complexities of apomictic taxa and their adaptation and speciation processes. Moreover, machine learning offers promise for analyzing large genomic datasets and uncovering hidden patterns, while interdisciplinary collaborations could translate findings into conservation, agriculture, and biotechnology applications.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Taylor & Francis  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
apomixis  
dc.subject
population genetics  
dc.subject
genomics  
dc.subject
asexual reproduction  
dc.subject
molecular markers  
dc.subject.classification
Genética y Herencia  
dc.subject.classification
Ciencias Biológicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Navigating the Challenges in Apomixis Population Genetics: Insights from Past, Present, and Future Perspectives  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2025-05-30T13:44:06Z  
dc.journal.pagination
1-32  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
Londres  
dc.description.fil
Fil: Karunarathne, Piyal. Universitat Dusseldorf; Alemania  
dc.description.fil
Fil: Reutemann, Anna Verena. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Botánica del Nordeste. Universidad Nacional del Nordeste. Facultad de Ciencias Agrarias. Instituto de Botánica del Nordeste; Argentina  
dc.description.fil
Fil: James, Jennifer E.. Uppsala Universitet; Suecia  
dc.description.fil
Fil: Zhou, Qiujie. Uppsala Universitet; Suecia  
dc.description.fil
Fil: Sassone, Agostina Belén. Leibniz Institute Of Plant Genetics And Crop Plant Research.; Alemania. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Botánica Darwinion. Academia Nacional de Ciencias Exactas, Físicas y Naturales. Instituto de Botánica Darwinion; Argentina  
dc.description.fil
Fil: Rose, Laura E.. Heinrich Heine University; Alemania  
dc.description.fil
Fil: Hojsgaard, Diego Hernan. Leibniz Institute Of Plant Genetics And Crop Plant Research.; Alemania. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Botánica del Nordeste. Universidad Nacional del Nordeste. Facultad de Ciencias Agrarias. Instituto de Botánica del Nordeste; Argentina  
dc.journal.title
Critical Reviews In Plant Sciences  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.tandfonline.com/doi/full/10.1080/07352689.2024.2440296  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1080/07352689.2024.2440296