Mostrar el registro sencillo del ítem
dc.contributor.author
Zhang, Wenmin
dc.contributor.author
Zhang, Ling
dc.contributor.author
Cheng, Yunxin
dc.contributor.author
Morita, Shigeru
dc.contributor.author
Sheng, Hui
dc.contributor.author
Mitnik, Dario Marcelo
dc.contributor.author
Sun, Youwen
dc.contributor.author
Wang, Zhengxiong
dc.contributor.author
Chu, Yuqi
dc.contributor.author
Hu, Ailan
dc.contributor.author
Jie, Yinxian
dc.contributor.author
Liu, Haiqing
dc.date.available
2025-05-30T12:30:18Z
dc.date.issued
2024-06
dc.identifier.citation
Zhang, Wenmin; Zhang, Ling; Cheng, Yunxin; Morita, Shigeru; Sheng, Hui; et al.; First observation of edge impurity behavior with n = 1 RMP application in EAST L-mode plasma; International Atomic Energy Agency; Nuclear Fusion; 64; 8; 6-2024; 1-14
dc.identifier.issn
0029-5515
dc.identifier.uri
http://hdl.handle.net/11336/263029
dc.description.abstract
High-Z impurity accumulation suppression and mitigation in core plasma is frequently observed in EAST edge localized mode mitigation experiments by using resonant magnetic perturbations (RMP) coils. To study the individual effects of the RMP field on impurity transport, based on high-performance extreme ultraviolet impurity spectroscopic diagnostics, the effect of the n = 1 (n is the toroidal mode number) RMP field on the behavior of intrinsic impurity ions at the plasma edge, e.g. He+, Li2+, C2+–C5+, O5+, Fe8+, Fe15+, Fe17+, Fe22+, Cu17+, Mo12+, Mo13+ and W27+, is analyzed for the first time in L-mode discharges. Based on the evaluation of the location of these impurity ions, it is found that with the increase in RMP current (IRMP), an impurity screening layer inside the last closed flux surface is formed, e.g. at ρ = 0.74–0.96, which is also the region that the RMP field affects. Outside this screening layer, the impurity ion flux of He+, Li2+, C2+, C3+, O5+, Fe8+, Mo12+ and Mo13+ ions increases gradually, while inside this screening layer, the impurity ion flux of C4+, C5+, Cu17+, W27+, Fe15+, Fe17+ and Fe22+ ions decreases gradually. When IRMP is higher than a threshold value, RMP field penetration occurs, accompanied with m/n = 2/1 mode locking, and the position of this screening layer moves to the plasma core region, i.e. ρ = 0.66–0.76, close to the q = 2 surface, and the opposite behavior of the impurity ion flux at two sides of the screening layer is strengthened dramatically. As a result, significant decontamination effects in the plasma core region, indicated by the factor of ((ΓImpZ+)w/o–(ΓImpZ+))/(ΓImpZ+)w/o (where (ΓImpZ+)/(ΓImpZ+)w/o denotes the impurity ion flux ratio with and without RMP), is observed, i.e. 30%–60% for heavy impurity (Fe, Cu, Mo, W), and ∼27% for light impurity of C. In addition, the analysis of the decontamination effects of C and Fe impurities under four different RMP phase configurations shows that it may be related to the strength of the response of the plasma to RMP. These results enhance the understanding of impurity accumulation suppression by the n = 1 RMP field and demonstrate a candidate approach using RMP coils for W control in magnetic confinement devices.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
International Atomic Energy Agency
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/
dc.subject
EAST tokamak
dc.subject
Impurity ion flux
dc.subject
Resonant magnetic perturbations
dc.subject
Screening layer
dc.subject.classification
Física Nuclear
dc.subject.classification
Ciencias Físicas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
First observation of edge impurity behavior with n = 1 RMP application in EAST L-mode plasma
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2025-05-20T11:38:58Z
dc.identifier.eissn
1741-4326
dc.journal.volume
64
dc.journal.number
8
dc.journal.pagination
1-14
dc.journal.pais
Austria
dc.journal.ciudad
Viena
dc.description.fil
Fil: Zhang, Wenmin. Chinese Academy of Sciences; República de China. University of Science and Technology of China; República de China
dc.description.fil
Fil: Zhang, Ling. Chinese Academy of Sciences; República de China
dc.description.fil
Fil: Cheng, Yunxin. Chinese Academy of Sciences; República de China
dc.description.fil
Fil: Morita, Shigeru. National Institute for Fusion Science; Japón
dc.description.fil
Fil: Sheng, Hui. Chinese Academy of Sciences; República de China
dc.description.fil
Fil: Mitnik, Dario Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina
dc.description.fil
Fil: Sun, Youwen. Chinese Academy of Sciences; República de China
dc.description.fil
Fil: Wang, Zhengxiong. Dalian University of Technology; China
dc.description.fil
Fil: Chu, Yuqi. University of California at Los Angeles; Estados Unidos
dc.description.fil
Fil: Hu, Ailan. Chinese Academy of Sciences; República de China
dc.description.fil
Fil: Jie, Yinxian. Chinese Academy of Sciences; República de China
dc.description.fil
Fil: Liu, Haiqing. Chinese Academy of Sciences; República de China
dc.journal.title
Nuclear Fusion
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://iopscience.iop.org/article/10.1088/1741-4326/ad4ef4
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1088/1741-4326/ad4ef4
Archivos asociados