Artículo
Fluorescent graphene quantum dots-enhanced machine learning for the accurate detection and quantification of Hg 2+ and Fe 3+ in real water samples
Llaver, Mauricio
; Barrionuevo, Santiago
; Nuñez, Jorge Martín
; Chapana Albornoz, Agostina Lucía
; Wuilloud, Rodolfo German
; Aguirre Myriam Haydee; Ibañez, Francisco Javier






Fecha de publicación:
04/2024
Editorial:
Royal Society of Chemistry
Revista:
Environmental Science: Nano
ISSN:
2051-8153
e-ISSN:
2051-8161
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Selective, accurate, fast detection with minimal usage of instrumentation has become paramount nowadays in the areas of environmental monitoring. Herein, we chemically modified fluorescent graphene quantum dots (GQDs) and trained a machine learning (ML) algorithm for the selective quantification of Hg2+ and Fe3+ ions present in real water samples. The probe is obtained via the electrosynthesis of CVD graphene in the presence of urea, followed by functionalization with 1-nitroso-2-naphthol (NN). The functionalization with NN moieties dramatically improves the selectivity and sensitivity of the probe toward Hg2+ and Fe3+, as demonstrated by LODs of 0.001 and 0.003 mg L−1 , respectively. Simulations performed by time-dependent density functional theory (TD-DFT) reveals that the NN molecules within the GQDs are responsible for the florescence emission of the probe. The emission spectra profiles exhibited distinct characteristics between Hg2+ and Fe3+, enabling the ML model to precisely quantify and differentiate between both analytes present in natural and drinking waters. The ML results were further validated by measurements via cold vapor-atomic fluorescence spectroscopy and UV–vis spectroscopy. Our work demonstrates how chemical modification of GQDs, guided by an efficient ML model, markedly enhances sensitivity and selectivity in detecting harmful ions while critically reducing experiments and instrument handling.
Palabras clave:
Quantum dots
,
Graphene
,
Machine Learning
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos (UE-INN - NODO BARILOCHE)
Articulos de UNIDAD EJECUTORA INSTITUTO DE NANOCIENCIA Y NANOTECNOLOGIA - NODO BARILOCHE
Articulos de UNIDAD EJECUTORA INSTITUTO DE NANOCIENCIA Y NANOTECNOLOGIA - NODO BARILOCHE
Articulos(ICB)
Articulos de INSTITUTO INTERDISCIPLINARIO DE CIENCIAS BASICAS
Articulos de INSTITUTO INTERDISCIPLINARIO DE CIENCIAS BASICAS
Articulos(INIFTA)
Articulos de INST.DE INV.FISICOQUIMICAS TEORICAS Y APLIC.
Articulos de INST.DE INV.FISICOQUIMICAS TEORICAS Y APLIC.
Citación
Llaver, Mauricio; Barrionuevo, Santiago; Nuñez, Jorge Martín; Chapana Albornoz, Agostina Lucía; Wuilloud, Rodolfo German; et al.; Fluorescent graphene quantum dots-enhanced machine learning for the accurate detection and quantification of Hg 2+ and Fe 3+ in real water samples; Royal Society of Chemistry; Environmental Science: Nano; 11; 6; 4-2024; 2703-2715
Compartir
Altmétricas