Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Assessment of Embedding Schemes in a Hybrid Machine Learning/Classical Potentials (ML/MM) Approach

Grassano, Juan Santiago; Pickering, Ignacio; Roitberg, AdrianIcon ; González Lebrero, Mariano CamiloIcon ; Estrin, Dario ArielIcon ; Semelak, Jonathan AlexisIcon
Fecha de publicación: 05/2024
Editorial: American Chemical Society
Revista: Journal of Chemical Information and Modeling
ISSN: 1549-9596
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Ciencias Químicas

Resumen

Machine learning (ML) methods have reached high accuracy levels for theprediction of in vacuo molecular properties. However, the simulation of large systems solelythrough ML methods (such as those based on neural network potentials) is still a challenge. Inthis context, one of the most promising frameworks for integrating ML schemes in thesimulation of complex molecular systems is the so-called ML/MM methods. These multiscaleapproaches combine ML methods with classical force fields (MM), in the same spirit as thesuccessful hybrid quantum mechanics−molecular mechanics methods (QM/MM). The keyissue for such ML/MM methods is an adequate description of the coupling between the regionof the system described by ML and the region described at the MM level. In the context ofQM/MM schemes, the main ingredient of the interaction is electrostatic, and the state of theart is the so-called electrostatic-embedding. In this study, we analyze the quality of simplermechanical embedding-based approaches, specifically focusing on their application within anML/MM framework utilizing atomic partial charges derived in vacuo. Taking as referenceelectrostatic embedding calculations performed at a QM(DFT)/MM level, we explore different atomic charges schemes, as well as apolarization correction computed using atomic polarizabilites. Our benchmark data set comprises a set of about 80k small organicstructures from the ANI-1x and ANI-2x databases, solvated in water. The results suggest that the minimal basis iterative stockholderatomic charges yield the best agreement with the reference coupling energy. Remarkable enhancements are achieved by including asimple polarization correction.
Palabras clave: machine learning , QM-MM
Ver el registro completo
 
Archivos asociados
Tamaño: 3.747Mb
Formato: PDF
.
Solicitar
Licencia
info:eu-repo/semantics/restrictedAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/262914
URL: https://pubs.acs.org/doi/10.1021/acs.jcim.4c00478
DOI: http://dx.doi.org/10.1021/acs.jcim.4c00478
Colecciones
Articulos(INQUIMAE)
Articulos de INST.D/QUIM FIS D/L MATERIALES MEDIOAMB Y ENERGIA
Citación
Grassano, Juan Santiago; Pickering, Ignacio; Roitberg, Adrian; González Lebrero, Mariano Camilo; Estrin, Dario Ariel; et al.; Assessment of Embedding Schemes in a Hybrid Machine Learning/Classical Potentials (ML/MM) Approach; American Chemical Society; Journal of Chemical Information and Modeling; 64; 10; 5-2024; 4047-4058
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES