Mostrar el registro sencillo del ítem

dc.contributor.author
Rossi, Florencia Belén  
dc.contributor.author
Rossi, Nicola  
dc.contributor.author
Orso, Gabriel Alejandro  
dc.contributor.author
Barberis, Lucas Miguel  
dc.contributor.author
Marin, Raul Hector  
dc.contributor.author
Kembro, Jackelyn Melissa  
dc.date.available
2025-05-28T15:14:26Z  
dc.date.issued
2024-11  
dc.identifier.citation
Rossi, Florencia Belén; Rossi, Nicola; Orso, Gabriel Alejandro; Barberis, Lucas Miguel; Marin, Raul Hector; et al.; Monitoring poultry social dynamics using colored tags: avian visual perception, behavioral effects, and artificial intelligence precision; Poultry Science Association; Poultry Science; 104; 104464; 11-2024; 1-12  
dc.identifier.issn
0032-5791  
dc.identifier.uri
http://hdl.handle.net/11336/262858  
dc.description.abstract
Artificial intelligence (AI) in animal behavior and welfare research is on the rise. AI can detect behaviors and localize animals in video recordings, thus it is a valuable tool for studying social dynamics. However, maintaining the identity of individuals over time, especially in homogeneous poultry flocks, remains challenging for algorithms. We propose using differentially colored “backpack” tags (black, gray, white, orange, red, purple, and green) detectable with computer vision (eg. YOLO) from top-view video recordings of pens. These tags can also accommodate sensors, such as accelerometers. In separate experiments, we aim to: (i) evaluate avian visual perception of the different colored tags; (ii) assess the potential impact of tag colors on social behavior; and (iii) test the ability of the YOLO model to accurately distinguish between different colored tags on Japanese quail in social group settings. First, the reflectance spectra of tags and feathers were measured. An avian visual model was applied to calculate the quantum catches for each spectrum. Green and purple tags showed significant chromatic contrast to the feather. Mostly tags presented greater luminance receptor stimulation than feathers. Birds wearing white, gray, purple, and green tags pecked significantly more at their own tags than those with black (control) tags. Additionally, fewer aggressive interactions were observed in groups with orange tags compared to groups with other colors, except for red. Next, heterogeneous groups of 5 birds with different color tags were videorecorded for 1 h. The precision and accuracy of YOLO to detect each color tag were assessed, yielding values of 95.9% and 97.3%, respectively, with most errors stemming from misclassifications between black and gray tags. Lastly using the YOLO output, we estimated each bird's average social distance, locomotion speed, and the percentage of time spent moving. No behavioral differences associated with tag color were detected. In conclusion, carefully selected colored backpack tags can be identified using AI models and can also hold other sensors, making them powerful tools for behavioral and welfare studies.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Poultry Science Association  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/  
dc.subject
computer vision  
dc.subject
Japanese quail  
dc.subject
visual model  
dc.subject
poultry  
dc.subject
YOLO  
dc.subject.classification
Otras Ciencias Veterinarias  
dc.subject.classification
Ciencias Veterinarias  
dc.subject.classification
CIENCIAS AGRÍCOLAS  
dc.title
Monitoring poultry social dynamics using colored tags: avian visual perception, behavioral effects, and artificial intelligence precision  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2025-05-22T09:40:13Z  
dc.journal.volume
104  
dc.journal.number
104464  
dc.journal.pagination
1-12  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: Rossi, Florencia Belén. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones Biológicas y Tecnológicas. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Instituto de Investigaciones Biológicas y Tecnológicas; Argentina  
dc.description.fil
Fil: Rossi, Nicola. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Diversidad y Ecología Animal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto de Diversidad y Ecología Animal; Argentina  
dc.description.fil
Fil: Orso, Gabriel Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones Biológicas y Tecnológicas. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Instituto de Investigaciones Biológicas y Tecnológicas; Argentina  
dc.description.fil
Fil: Barberis, Lucas Miguel. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina  
dc.description.fil
Fil: Marin, Raul Hector. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones Biológicas y Tecnológicas. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Instituto de Investigaciones Biológicas y Tecnológicas; Argentina  
dc.description.fil
Fil: Kembro, Jackelyn Melissa. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones Biológicas y Tecnológicas. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Instituto de Investigaciones Biológicas y Tecnológicas; Argentina  
dc.journal.title
Poultry Science  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S0032579124010423  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.psj.2024.104464