Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Random forest in plant genetics and breeding: an application in tomato as a model crop

Título: Random forest en genética y mejoramiento genético de plantas: una aplicación en tomate como cultivo modelo
Faviere, G.; Vitelleschi, María Susana; Pratta, Guillermo RaúlIcon
Fecha de publicación: 07/2024
Editorial: Sociedad Argentina de Genética
Revista: Basic and Applied Genetics
ISSN: 1666-0390
e-ISSN: 1852-6233
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Horticultura, Viticultura; Estadística y Probabilidad; Ciencias de la Información y Bioinformática

Resumen

Random Forest approaches have been used in phenotyping at both morphological and metabolic levels and in genomics studies, but direct applications in practical situations of plant genetics and breeding are scarce. Random Forest was compared with Discriminant Analysis for its ability in classifying tomato individuals belonging to different breeding populations, exclusively based on phenotypic fruit quality traits. In order to take into account different steps in breeding programs, two populations were assayed. One was composed by a set of RILs derived from an interspecific tomato cross, and the other was composed by two of these RILs and the corresponding F1, F2 and backcross generations. Being tomato an autogamous species, the first population was considered a final step in breeding programs because promising genotypes are being evaluated for putative commercial release as new cultivars. Meanwhile, the second one, in which new variation is being generated, was considered as an initial step. Both Random Forest and Discriminant Analysis were able to classify populations with the aim of evaluating general variability and identifying the traits that most contribute to this variability. However, overall errors in classification were lower for Random Forest. When comparing the adequacy of classification between populations, errors of both statistical analyses were greater in the second population than in the first one, though Random Forest was more precise than Discriminant Analysis even in this initial step of plant breeding programs. Random Forest allowed breeders to get a reliable classification of tomato individuals belonging to different breeding populations.
Palabras clave: Discriminant Analysis , Machime Learning , Parametric and non-parametric classification techniques , Phenotype identification , Traits categorization
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 676.6Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/262678
URL: https://sag.org.ar/jbag/en/project/vol-xxxv-issue-1-2/
DOI: http://dx.doi.org/10.35407/bag.2024.35.01.03
Colecciones
Articulos(IICAR)
Articulos de INST. DE INVESTIGACIONES EN CIENCIAS AGRARIAS DE ROSARIO
Citación
Faviere, G.; Vitelleschi, María Susana; Pratta, Guillermo Raúl; Random forest in plant genetics and breeding: an application in tomato as a model crop; Sociedad Argentina de Genética; Basic and Applied Genetics; 35; 1; 7-2024; 39-51
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES