Mostrar el registro sencillo del ítem

dc.contributor.author
Ghersa, Felipe  
dc.contributor.author
Figarola, Lucas A.  
dc.contributor.author
Castro, Rodrigo Daniel  
dc.contributor.author
Ferraro, Diego Omar  
dc.date.available
2025-05-27T12:22:05Z  
dc.date.issued
2024-09  
dc.identifier.citation
Ghersa, Felipe; Figarola, Lucas A.; Castro, Rodrigo Daniel; Ferraro, Diego Omar; AgrOptim: A novel multi-objective simulation optimization framework for extensive cropping systems; Elsevier; Computers and Eletronics in Agriculture; 224; 9-2024; 1-18  
dc.identifier.issn
0168-1699  
dc.identifier.uri
http://hdl.handle.net/11336/262666  
dc.description.abstract
Cropping systems should be designed to be more productive and have a smaller environmental footprint to sustainably meet the growing demand for food, fiber, and fuel. However, this requires the evaluation and ranking of many cropping system designs based on their economic and biophysical performance, which are often in conflict. Although field experiments and simple crop simulation models have been used for this purpose, studies have generally considered a limited number of agronomic decision combinations or indicators that partially capture ecosystem functions. Coupling evolutionary algorithms with process-based crop simulation models provides a less resource-intensive alternative and can incorporate many indicators to (1) quantify the trade-offs between biophysical and economic performance, and (2) identify the set of agronomic decision combinations that minimize these trade-offs. The objective of this paper was to present AgrOptim, a novel cropping system simulation optimization framework that uses genetic algorithms to optimize a holistic set of biophysical and economic performance indicators through different combinations of agronomic decision variables (i.e., crop sequence, crop structure, pesticide dose, and fertilizer dose). Indicators were derived from a process-based crop simulation model, an ecotoxicological risk simulation model, and emergy synthesis. The framework was implemented in Argentina to (1) characterize the relationship between economic and biophysical indicators and (2) evaluate the current state and potential improvements of three frequently used cropping system designs. A multi-objective optimization experiment was designed to simultaneously optimize 30-year cropping sequences based on one economic objective (return on investment) and four biophysical objectives (crop residue carbon inputs, precipitation use efficiency, nonrenewable to renewable energy ratio, and pesticide ecotoxicity). Results showed that trade-offs exist between economic and all biophysical objectives, albeit with varying intensities. Additionally, the decision variables that provided improved performance in terms of carbon residues, precipitation use efficiency, and ecotoxicological risk also presented higher levels of nonrenewable energy use. For the three frequently used cropping system designs, the decision variables that improved the performance of each indicator were identified. These findings highlight the challenges faced by agricultural producers considering the trade-offs between their economic and biophysical objectives. Additionally, they reveal potential model-aided improvements that can be obtained using crop simulation models and optimization algorithms to redesign cropping systems.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
agricultura  
dc.subject
sustentabilidad  
dc.subject
modelos  
dc.subject
argentina  
dc.subject.classification
Agricultura  
dc.subject.classification
Agricultura, Silvicultura y Pesca  
dc.subject.classification
CIENCIAS AGRÍCOLAS  
dc.title
AgrOptim: A novel multi-objective simulation optimization framework for extensive cropping systems  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2025-05-27T11:27:04Z  
dc.journal.volume
224  
dc.journal.pagination
1-18  
dc.journal.pais
Países Bajos  
dc.description.fil
Fil: Ghersa, Felipe. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; Argentina  
dc.description.fil
Fil: Figarola, Lucas A.. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; Argentina  
dc.description.fil
Fil: Castro, Rodrigo Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina  
dc.description.fil
Fil: Ferraro, Diego Omar. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; Argentina  
dc.journal.title
Computers and Eletronics in Agriculture  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.compag.2024.109119