Mostrar el registro sencillo del ítem
dc.contributor.author
Ghersa, Felipe

dc.contributor.author
Figarola, Lucas A.
dc.contributor.author
Castro, Rodrigo Daniel

dc.contributor.author
Ferraro, Diego Omar

dc.date.available
2025-05-27T12:22:05Z
dc.date.issued
2024-09
dc.identifier.citation
Ghersa, Felipe; Figarola, Lucas A.; Castro, Rodrigo Daniel; Ferraro, Diego Omar; AgrOptim: A novel multi-objective simulation optimization framework for extensive cropping systems; Elsevier; Computers and Eletronics in Agriculture; 224; 9-2024; 1-18
dc.identifier.issn
0168-1699
dc.identifier.uri
http://hdl.handle.net/11336/262666
dc.description.abstract
Cropping systems should be designed to be more productive and have a smaller environmental footprint to sustainably meet the growing demand for food, fiber, and fuel. However, this requires the evaluation and ranking of many cropping system designs based on their economic and biophysical performance, which are often in conflict. Although field experiments and simple crop simulation models have been used for this purpose, studies have generally considered a limited number of agronomic decision combinations or indicators that partially capture ecosystem functions. Coupling evolutionary algorithms with process-based crop simulation models provides a less resource-intensive alternative and can incorporate many indicators to (1) quantify the trade-offs between biophysical and economic performance, and (2) identify the set of agronomic decision combinations that minimize these trade-offs. The objective of this paper was to present AgrOptim, a novel cropping system simulation optimization framework that uses genetic algorithms to optimize a holistic set of biophysical and economic performance indicators through different combinations of agronomic decision variables (i.e., crop sequence, crop structure, pesticide dose, and fertilizer dose). Indicators were derived from a process-based crop simulation model, an ecotoxicological risk simulation model, and emergy synthesis. The framework was implemented in Argentina to (1) characterize the relationship between economic and biophysical indicators and (2) evaluate the current state and potential improvements of three frequently used cropping system designs. A multi-objective optimization experiment was designed to simultaneously optimize 30-year cropping sequences based on one economic objective (return on investment) and four biophysical objectives (crop residue carbon inputs, precipitation use efficiency, nonrenewable to renewable energy ratio, and pesticide ecotoxicity). Results showed that trade-offs exist between economic and all biophysical objectives, albeit with varying intensities. Additionally, the decision variables that provided improved performance in terms of carbon residues, precipitation use efficiency, and ecotoxicological risk also presented higher levels of nonrenewable energy use. For the three frequently used cropping system designs, the decision variables that improved the performance of each indicator were identified. These findings highlight the challenges faced by agricultural producers considering the trade-offs between their economic and biophysical objectives. Additionally, they reveal potential model-aided improvements that can be obtained using crop simulation models and optimization algorithms to redesign cropping systems.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier

dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
agricultura
dc.subject
sustentabilidad
dc.subject
modelos
dc.subject
argentina
dc.subject.classification
Agricultura

dc.subject.classification
Agricultura, Silvicultura y Pesca

dc.subject.classification
CIENCIAS AGRÍCOLAS

dc.title
AgrOptim: A novel multi-objective simulation optimization framework for extensive cropping systems
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2025-05-27T11:27:04Z
dc.journal.volume
224
dc.journal.pagination
1-18
dc.journal.pais
Países Bajos

dc.description.fil
Fil: Ghersa, Felipe. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; Argentina
dc.description.fil
Fil: Figarola, Lucas A.. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; Argentina
dc.description.fil
Fil: Castro, Rodrigo Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina
dc.description.fil
Fil: Ferraro, Diego Omar. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; Argentina
dc.journal.title
Computers and Eletronics in Agriculture

dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.compag.2024.109119
Archivos asociados