Artículo
Prediction of the temporal evolution of microparticle resuspension in ventilated duct during a fan start by a Monte Carlo model
Fecha de publicación:
02/2024
Editorial:
Taylor & Francis
Revista:
Aerosol Science And Technology
ISSN:
0278-6826
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
When a fan is turned on in a Heating Ventilating and Air Conditioning (HVAC) duct, it firstexhibits a transient airflow period (acceleration regime) which is then followed by a constantairflow (steady state regime). Understanding particle resuspension in such realistic airflowscenario could prevent contamination of the surrounding environment and improvethe indoor air quality. For this purpose, this work analyzes the temporal evolution of thisphenomenon and relates it along with the instantaneous properties of the airflow pattern.To achieve this goal, a Monte Carlo (MC) numerical model is adapted in order to take intoaccount the temporal airflow pattern during both accelerated and steady state regime. Thenumerical results obtained with this new version of the Monte Carlo model are comparedwith previous resuspension experiments performed in a ventilated duct using such airflowscenarios. A detailed analysis of the velocity profile and, above all, of its fluctuations is takeninto account in the model. In light of the results obtained, it can be determined that thisinstantaneous aerodynamic information is essential for the model to provide realistic resultsin a non-steady airflow scenario.
Palabras clave:
resuspension
,
ventilation ducts
,
Monte Carlo
,
adhesion
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(INFAP)
Articulos de INST. DE FISICA APLICADA "DR. JORGE ANDRES ZGRABLICH"
Articulos de INST. DE FISICA APLICADA "DR. JORGE ANDRES ZGRABLICH"
Citación
Benito, Jesica Gisele; Theron, Félicie; Le Coq, Laurence; Uñac, Rodolfo Omar; Vidales, Ana Maria; Prediction of the temporal evolution of microparticle resuspension in ventilated duct during a fan start by a Monte Carlo model; Taylor & Francis; Aerosol Science And Technology; 58; 3; 2-2024; 244-263
Compartir
Altmétricas