Evento
Learning when to classify for early text classification
Tipo del evento:
Congreso
Nombre del evento:
XXIII Congreso Argentino de Ciencias de la Computación
Fecha del evento:
09/10/2017
Institución Organizadora:
Universidad Nacional de La Plata. Facultad de Informática;
Red de Universidades con Carreras en Informática;
Título del Libro:
Libro de Actas: XXIII Congreso Argentino de Ciencias de la Computación
Editorial:
Universidad Nacional de La Plata. Facultad de Informática
ISBN:
978-950-34-1539-9
Idioma:
Inglés
Clasificación temática:
Resumen
The problem of classification in supervised learning is a widely studied one. Nonetheless, there are scenarios that received little attention despite its applicability. One of such scenarios is early text classification, where one needs to know the category of a document as soon as possible. The importance of this variant of the classification problem is evident in tasks like sexual predator detection, where one wants to identify an offender as early as possible. This paper presents a framework for early text classification which highlights the two main pieces involved in this problem: classification with partial information and deciding the moment of classification. In this context, a novel approach that learns the second component (when classify) and an adaptation of a temporal measurement for multi-class problems are introduced. Results with a classical text classification corpus in comparison against a model that reads the entire documents confirm the feasibility of our approach.
Archivos asociados
Licencia
Identificadores
Colecciones
Eventos(IMASL)
Eventos de INST. DE MATEMATICA APLICADA DE SAN LUIS
Eventos de INST. DE MATEMATICA APLICADA DE SAN LUIS
Citación
Learning when to classify for early text classification; XXIII Congreso Argentino de Ciencias de la Computación; La Plata; Argentina; 2017; 103-112
Compartir