Mostrar el registro sencillo del ítem

dc.contributor.author
Fernández, Pablo Andrés  
dc.contributor.author
Cid, Mariana Paula  
dc.contributor.author
Comin, Romina  
dc.contributor.author
Velasco, Manuel Isaac  
dc.date.available
2025-05-22T13:40:14Z  
dc.date.issued
2024-12  
dc.identifier.citation
Fernández, Pablo Andrés; Cid, Mariana Paula; Comin, Romina; Velasco, Manuel Isaac; Structural Characterization and Hydration Dynamics of Cross-Linked Collagen and Hyaluronic Acid Scaffolds by Nuclear Magnetic Resonance; American Chemical Society; Journal of Physical Chemistry B; 128; 49; 12-2024; 12143-12153  
dc.identifier.issn
1520-6106  
dc.identifier.uri
http://hdl.handle.net/11336/262344  
dc.description.abstract
Understanding a biomaterial’s structural and hydration dynamics is essential for its development and applications in tissue regeneration. In this study, collagen–hyaluronic acid (HA) scaffolds were analyzed utilizing Nuclear Magnetic Resonance (NMR) techniques to elucidate how different cross-linking conditions influence the internal architecture and interaction with solvents in these scaffolds. The scaffolds were fabricated using 3D printing and cross-linked with 1,4-butanediol diglycidyl ether (BDDGE), a process known to impact their mechanical properties. We gained insights into the microstructural organization and hydration behavior within the scaffolds when exposed to water and ethanol by employing proton relaxation and diffusion measurements. To better understand the system’s performance, static and dynamic experiments were performed. Our results indicate that the degree of cross-linking affects the scaffold’s ability to retain water, with higher cross-linking leading to more rigid structures. This also altered the hydration dynamics mainly due to a difference in the diffusion of water within the scaffold. In addition, the anisotropy of the collagen fibers also decreases with the cross-linking. Ethanol, a less polar solvent, provided a contrasting environment that further revealed the structural dependencies on the cross-linking density. The study’s findings contribute to a deeper understanding of how the structure and morphology affect the functionality of collagen–HA scaffolds, offering critical information for optimizing their design for specific biomedical applications, such as soft tissue regeneration. Our experiments show how NMR is a valuable tool to provide information on dynamic processes not only in collagen–HA scaffolds but also in many biocompatible polymeric samples. The outcomes of this research provide a foundation for future work aimed at tailoring scaffold properties to enhance their performance in clinical settings, ultimately advancing the field of tissue engineering.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
American Chemical Society  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
NUCLEAR MAGNETIC RESONANCE  
dc.subject
COLLAGEN  
dc.subject
HYALURON ACID  
dc.subject
CROSSLINKING  
dc.subject.classification
Física Atómica, Molecular y Química  
dc.subject.classification
Ciencias Físicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Structural Characterization and Hydration Dynamics of Cross-Linked Collagen and Hyaluronic Acid Scaffolds by Nuclear Magnetic Resonance  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2025-05-22T09:35:57Z  
dc.journal.volume
128  
dc.journal.number
49  
dc.journal.pagination
12143-12153  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: Fernández, Pablo Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones Biológicas y Tecnológicas. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Instituto de Investigaciones Biológicas y Tecnológicas; Argentina  
dc.description.fil
Fil: Cid, Mariana Paula. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones Biológicas y Tecnológicas. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Instituto de Investigaciones Biológicas y Tecnológicas; Argentina  
dc.description.fil
Fil: Comin, Romina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones Biológicas y Tecnológicas. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Instituto de Investigaciones Biológicas y Tecnológicas; Argentina  
dc.description.fil
Fil: Velasco, Manuel Isaac. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina  
dc.journal.title
Journal of Physical Chemistry B  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/10.1021/acs.jpcb.4c06316  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1021/acs.jpcb.4c06316