Artículo
Weighted inequalities for Schrödinger type singular integrals on variable Lebesgue spaces
Fecha de publicación:
06/2024
Editorial:
Mathematical Sciences Publishers
Revista:
Tunisian Journal of Mathematics
ISSN:
2576-7658
e-ISSN:
2576-7666
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
In this paper we study the boundedness in weighted variable Lebesgue spaces of operators associated with the semigroup generated by the time-independent Schrödinger operator L=-Delta+V in R^d , where d>2 and the nonnegative potential V belongs to the reverse Hölder class RH_q with q>d/2. Each of the operators that we are going to deal with are singular integrals given by a kernel K(x,y), which satisfies certain size and smoothness conditions in relation to a critical radius function ρ which comes appears naturally in the harmonic analysis related to Schrödinger operator L.
Palabras clave:
SCHRÖDINGER OPERATOR
,
SINGULAR INTEGRALS
,
VARIABLE LEBESGUE SPACES
,
WEIGHTS
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IMIT)
Articulos de INST.DE MODELADO E INNOVACION TECNOLOGICA
Articulos de INST.DE MODELADO E INNOVACION TECNOLOGICA
Citación
Cabral, Enrique Adrian; Weighted inequalities for Schrödinger type singular integrals on variable Lebesgue spaces; Mathematical Sciences Publishers; Tunisian Journal of Mathematics; 6; 2; 6-2024; 321-342
Compartir