Mostrar el registro sencillo del ítem

dc.contributor.author
Soulé, Ezequiel Rodolfo  
dc.contributor.author
Rey, Alejandro D.  
dc.date.available
2015-11-02T15:00:50Z  
dc.date.issued
2013-09-03  
dc.identifier.citation
Soulé, Ezequiel Rodolfo; Rey, Alejandro D.; Oscillating fronts produced by spinodal decomposition of metastable ordered phases; Royal Society Of Chemistry; Soft Matter; 9; 3-9-2013; 10335-10342  
dc.identifier.issn
1744-683X  
dc.identifier.uri
http://hdl.handle.net/11336/2619  
dc.description.abstract
Mesophase–particle mixtures are emerging functional material systems whose structure, dynamics and formation through phase transitions are poorly understood. In this paper, novel phase transitions in a system of coupled conserved and non-conserved order parameters – a mixture of liquid crystals and nanoparticles – are studied via phase-field modelling, under conditions where an intermediate phase, which is unstable to composition fluctuations, can be formed between the initial supercooled phase and the new stable phase. This paper analyzes the formation, stability and evolution of this intermediate phase and how it impacts the transformation of an isotropic phase when it is quenched with single and double temperature jumps to form a calamitic nematic phase. It is found that the intermediate phase forms through a front-splitting mechanism and grows for some time, but eventually decays through a spinodal decomposition starting at the interface and propagating to the bulk, producing a moving oscillating front. It is found that this phenomenon can be triggered solely by the presence of the interface even in the absence of composition fluctuations in the bulk. Spinodal decomposition initiated by thermal fluctuations also generates a moving oscillating front (because the intermediate phase was formed by a moving front). As a consequence, the velocity of the moving front changes from a small value at short time (interface-induced spinodal), to a large value at some finite time (moving bulk spinodal). The effect of a double quench was also analyzed and it was found that the oscillating front can be confined to a region close to the interface (“mushy” region), and the isotropic phase (originally of infinite extension) can be confined to a region close to the oscillating front, generating a very atypical phase morphology.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Royal Society Of Chemistry  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject.classification
Ingeniería de los Materiales  
dc.subject.classification
Ingeniería de los Materiales  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.subject.classification
Físico-Química, Ciencia de los Polímeros, Electroquímica  
dc.subject.classification
Ciencias Químicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Oscillating fronts produced by spinodal decomposition of metastable ordered phases  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2016-03-30 10:35:44.97925-03  
dc.journal.volume
9  
dc.journal.pagination
10335-10342  
dc.journal.pais
Gbr  
dc.journal.ciudad
Cambridge  
dc.description.fil
Fil: Soulé, Ezequiel Rodolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Mar del Plata. Instituto de Investigación en Ciencia y Tecnología de Materiales (i); Argentina. Universidad Nacional de Mar del Plata. Facultad de Ingenieria; Argentina  
dc.description.fil
Fil: Rey, Alejandro D.. McGill University. Department of Chemical Engineering; Canadá;  
dc.journal.title
Soft Matter  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1039/C3SM51669E  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://pubs.rsc.org/en/Content/ArticleLanding/2013/SM/c3sm51669e#!divAbstract