Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

A Neural Network Model for Estimating the Particle Size Distribution of Dilute Latex from Multiangle Dynamic Light Scattering Measurements

Gugliotta, Luis MarcelinoIcon ; Stegmayer, GeorginaIcon ; Clementi, Luis AlbertoIcon ; González, Verónica Doris GuadalupeIcon ; Minari, Roque JavierIcon ; Leiza, José; Vega, Jorge RubenIcon
Fecha de publicación: 12/2009
Editorial: Wiley
Revista: Particle & Particle Systems Characterization
ISSN: 0934-0866
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Otras Ingeniería Química

Resumen

The particle size distribution (PSD) of dilute latex was estimated through a general regression neural network (GRNN) that was supplied with PSD average diameters derived from multiangle dynamic light scattering (MDLS) measurements. The GRNN was trained with a large set of measurements that were simulated from unimodal normal-logarithmic distributions representing the PSDs of polystyrene (PS) latexes. The proposed method was first tested through three simulated examples involving different PSD shapes, widths, and diameter ranges. Then the GRNN was employed to estimate the PSD of two PS samples; a latex standard of narrow PSD and known nominal diameter, and a latex synthesized in our laboratory. Both samples were also characterized through independent techniques (capillary hydrodynamic fractionation, transmission electron microscopy, and disc centrifugation). For comparison, all examples were solved by numerical inversion of MDLS measurements through a Tikhonov regularization technique. The PSDs estimated by the GRNN gave more accurate results than those obtained through other conventional techniques. The proposed method is a simple, effective, and robust tool for characterizing unimodal PSDs.
Palabras clave: Dynamic Light Scattering , Latex , Multiangle Measurements , Neural Network , Particle Size Distribution
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 205.2Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/26160
DOI: http://dx.doi.org/10.1002/ppsc.200800010
URL: http://onlinelibrary.wiley.com/doi/10.1002/ppsc.200800010/abstract
Colecciones
Articulos(CCT - SANTA FE)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - SANTA FE
Articulos(INTEC)
Articulos de INST.DE DES.TECNOL.PARA LA IND.QUIMICA (I)
Citación
Gugliotta, Luis Marcelino; Stegmayer, Georgina; Clementi, Luis Alberto; González, Verónica Doris Guadalupe; Minari, Roque Javier; et al.; A Neural Network Model for Estimating the Particle Size Distribution of Dilute Latex from Multiangle Dynamic Light Scattering Measurements; Wiley; Particle & Particle Systems Characterization; 26; 1-2; 12-2009; 41-52
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES