Mostrar el registro sencillo del ítem

dc.contributor.author
Maier Hein, Lena  
dc.contributor.author
Reinke, Annika  
dc.contributor.author
Godau, Patrick  
dc.contributor.author
Tizabi, Minu D.  
dc.contributor.author
Buettner, Florian  
dc.contributor.author
Christodoulou, Evangelia  
dc.contributor.author
Glocker, Ben  
dc.contributor.author
Isensee, Fabian  
dc.contributor.author
Kleesiek, Jens  
dc.contributor.author
Kozubek, Michal  
dc.contributor.author
Reyes, Mauricio  
dc.contributor.author
Riegler, Michael A.  
dc.contributor.author
Wiesenfarth, Manuel  
dc.contributor.author
Kavur, A. Emre  
dc.contributor.author
Sudre, Carole H.  
dc.contributor.author
Baumgartner, Michael  
dc.contributor.author
Eisenmann, Matthias  
dc.contributor.author
Heckmann Nötzel, Doreen  
dc.contributor.author
Rädsch, Tim  
dc.contributor.author
Acion, Laura  
dc.contributor.author
Antonelli, Michela  
dc.contributor.author
Arbel, Tal  
dc.contributor.author
Bakas, Spyridon  
dc.contributor.author
Benis, Arriel  
dc.contributor.author
Ferrer, Luciana  
dc.contributor.author
Tiulpin, Aleksei  
dc.contributor.author
Tsaftaris, Sotirios A.  
dc.contributor.author
Van Calster, Ben  
dc.contributor.author
Varoquaux, Gaël  
dc.contributor.author
Jäger, Paul F.  
dc.date.available
2025-05-14T14:55:41Z  
dc.date.issued
2024-02  
dc.identifier.citation
Maier Hein, Lena; Reinke, Annika; Godau, Patrick; Tizabi, Minu D.; Buettner, Florian; et al.; Metrics reloaded: recommendations for image analysis validation; Nature Publishing Group; Nature Methods; 21; 2; 2-2024; 195-212  
dc.identifier.issn
1548-7091  
dc.identifier.uri
http://hdl.handle.net/11336/261550  
dc.description.abstract
Increasing evidence shows that flaws in machine learning (ML) algorithm validation are an underestimated global problem. In biomedical image analysis, chosen performance metrics often do not reflect the domain interest, and thus fail to adequately measure scientific progress and hinder translation of ML techniques into practice. To overcome this, we created Metrics Reloaded, a comprehensive framework guiding researchers in the problem-aware selection of metrics. Developed by a large international consortium in a multistage Delphi process, it is based on the novel concept of a problem fingerprint—a structured representation of the given problem that captures all aspects that are relevant for metric selection, from the domain interest to the properties of the target structure(s), dataset and algorithm output. On the basis of the problem fingerprint, users are guided through the process of choosing and applying appropriate validation metrics while being made aware of potential pitfalls. Metrics Reloaded targets image analysis problems that can be interpreted as classification tasks at image, object or pixel level, namely image-level classification, object detection, semantic segmentation and instance segmentation tasks. To improve the user experience, we implemented the framework in the Metrics Reloaded online tool. Following the convergence of ML methodology across application domains, Metrics Reloaded fosters the convergence of validation methodology. Its applicability is demonstrated for various biomedical use cases.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Nature Publishing Group  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
EVALUATION METRIC  
dc.subject
MEDICAL IMAGE PROCESSING  
dc.subject.classification
Ciencias de la Información y Bioinformática  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Metrics reloaded: recommendations for image analysis validation  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2025-04-14T10:39:32Z  
dc.journal.volume
21  
dc.journal.number
2  
dc.journal.pagination
195-212  
dc.journal.pais
Reino Unido  
dc.journal.ciudad
Londres  
dc.description.fil
Fil: Maier Hein, Lena. German Cancer Research Center; Alemania. Heidelberg University; Alemania. University Medical Center Heidelberg; Alemania  
dc.description.fil
Fil: Reinke, Annika. German Cancer Research Center; Alemania. Heidelberg University; Alemania. University Medical Center Heidelberg; Alemania  
dc.description.fil
Fil: Godau, Patrick. German Cancer Research Center; Alemania. Heidelberg University; Alemania. University Medical Center Heidelberg; Alemania  
dc.description.fil
Fil: Tizabi, Minu D.. German Cancer Research Center; Alemania. Heidelberg University; Alemania  
dc.description.fil
Fil: Buettner, Florian. German Cancer Research Center; Alemania. Heidelberg University; Alemania  
dc.description.fil
Fil: Christodoulou, Evangelia. German Cancer Research Center; Alemania. Heidelberg University; Alemania  
dc.description.fil
Fil: Glocker, Ben. German Cancer Research Center; Alemania. Heidelberg University; Alemania  
dc.description.fil
Fil: Isensee, Fabian. German Cancer Research Center; Alemania  
dc.description.fil
Fil: Kleesiek, Jens. German Cancer Research Center; Alemania  
dc.description.fil
Fil: Kozubek, Michal. German Cancer Research Center; Alemania  
dc.description.fil
Fil: Reyes, Mauricio. German Cancer Research Center; Alemania  
dc.description.fil
Fil: Riegler, Michael A.. German Cancer Research Center; Alemania  
dc.description.fil
Fil: Wiesenfarth, Manuel. German Cancer Research Center; Alemania  
dc.description.fil
Fil: Kavur, A. Emre. German Cancer Research Center; Alemania  
dc.description.fil
Fil: Sudre, Carole H.. German Cancer Research Center; Alemania  
dc.description.fil
Fil: Baumgartner, Michael. German Cancer Research Center; Alemania  
dc.description.fil
Fil: Eisenmann, Matthias. German Cancer Research Center; Alemania  
dc.description.fil
Fil: Heckmann Nötzel, Doreen. German Cancer Research Center; Alemania  
dc.description.fil
Fil: Rädsch, Tim. German Cancer Research Center; Alemania  
dc.description.fil
Fil: Acion, Laura. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Cálculo; Argentina  
dc.description.fil
Fil: Antonelli, Michela. German Cancer Research Center; Alemania  
dc.description.fil
Fil: Arbel, Tal. German Cancer Research Center; Alemania  
dc.description.fil
Fil: Bakas, Spyridon. German Cancer Research Center; Alemania  
dc.description.fil
Fil: Benis, Arriel. German Cancer Research Center; Alemania  
dc.description.fil
Fil: Ferrer, Luciana. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; Argentina  
dc.description.fil
Fil: Tiulpin, Aleksei. German Cancer Research Center; Alemania  
dc.description.fil
Fil: Tsaftaris, Sotirios A.. German Cancer Research Center; Alemania  
dc.description.fil
Fil: Van Calster, Ben. German Cancer Research Center; Alemania  
dc.description.fil
Fil: Varoquaux, Gaël. German Cancer Research Center; Alemania  
dc.description.fil
Fil: Jäger, Paul F.. German Cancer Research Center; Alemania  
dc.journal.title
Nature Methods  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.nature.com/articles/s41592-023-02151-z  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1038/s41592-023-02151-z