Mostrar el registro sencillo del ítem
dc.contributor.author
Maier Hein, Lena
dc.contributor.author
Reinke, Annika
dc.contributor.author
Godau, Patrick
dc.contributor.author
Tizabi, Minu D.
dc.contributor.author
Buettner, Florian
dc.contributor.author
Christodoulou, Evangelia
dc.contributor.author
Glocker, Ben
dc.contributor.author
Isensee, Fabian
dc.contributor.author
Kleesiek, Jens
dc.contributor.author
Kozubek, Michal
dc.contributor.author
Reyes, Mauricio
dc.contributor.author
Riegler, Michael A.
dc.contributor.author
Wiesenfarth, Manuel
dc.contributor.author
Kavur, A. Emre
dc.contributor.author
Sudre, Carole H.
dc.contributor.author
Baumgartner, Michael
dc.contributor.author
Eisenmann, Matthias
dc.contributor.author
Heckmann Nötzel, Doreen
dc.contributor.author
Rädsch, Tim
dc.contributor.author
Acion, Laura

dc.contributor.author
Antonelli, Michela
dc.contributor.author
Arbel, Tal
dc.contributor.author
Bakas, Spyridon
dc.contributor.author
Benis, Arriel
dc.contributor.author
Ferrer, Luciana

dc.contributor.author
Tiulpin, Aleksei
dc.contributor.author
Tsaftaris, Sotirios A.
dc.contributor.author
Van Calster, Ben
dc.contributor.author
Varoquaux, Gaël
dc.contributor.author
Jäger, Paul F.
dc.date.available
2025-05-14T14:55:41Z
dc.date.issued
2024-02
dc.identifier.citation
Maier Hein, Lena; Reinke, Annika; Godau, Patrick; Tizabi, Minu D.; Buettner, Florian; et al.; Metrics reloaded: recommendations for image analysis validation; Nature Publishing Group; Nature Methods; 21; 2; 2-2024; 195-212
dc.identifier.issn
1548-7091
dc.identifier.uri
http://hdl.handle.net/11336/261550
dc.description.abstract
Increasing evidence shows that flaws in machine learning (ML) algorithm validation are an underestimated global problem. In biomedical image analysis, chosen performance metrics often do not reflect the domain interest, and thus fail to adequately measure scientific progress and hinder translation of ML techniques into practice. To overcome this, we created Metrics Reloaded, a comprehensive framework guiding researchers in the problem-aware selection of metrics. Developed by a large international consortium in a multistage Delphi process, it is based on the novel concept of a problem fingerprint—a structured representation of the given problem that captures all aspects that are relevant for metric selection, from the domain interest to the properties of the target structure(s), dataset and algorithm output. On the basis of the problem fingerprint, users are guided through the process of choosing and applying appropriate validation metrics while being made aware of potential pitfalls. Metrics Reloaded targets image analysis problems that can be interpreted as classification tasks at image, object or pixel level, namely image-level classification, object detection, semantic segmentation and instance segmentation tasks. To improve the user experience, we implemented the framework in the Metrics Reloaded online tool. Following the convergence of ML methodology across application domains, Metrics Reloaded fosters the convergence of validation methodology. Its applicability is demonstrated for various biomedical use cases.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Nature Publishing Group

dc.rights
info:eu-repo/semantics/restrictedAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
EVALUATION METRIC
dc.subject
MEDICAL IMAGE PROCESSING
dc.subject.classification
Ciencias de la Información y Bioinformática

dc.subject.classification
Ciencias de la Computación e Información

dc.subject.classification
CIENCIAS NATURALES Y EXACTAS

dc.title
Metrics reloaded: recommendations for image analysis validation
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2025-04-14T10:39:32Z
dc.journal.volume
21
dc.journal.number
2
dc.journal.pagination
195-212
dc.journal.pais
Reino Unido

dc.journal.ciudad
Londres
dc.description.fil
Fil: Maier Hein, Lena. German Cancer Research Center; Alemania. Heidelberg University; Alemania. University Medical Center Heidelberg; Alemania
dc.description.fil
Fil: Reinke, Annika. German Cancer Research Center; Alemania. Heidelberg University; Alemania. University Medical Center Heidelberg; Alemania
dc.description.fil
Fil: Godau, Patrick. German Cancer Research Center; Alemania. Heidelberg University; Alemania. University Medical Center Heidelberg; Alemania
dc.description.fil
Fil: Tizabi, Minu D.. German Cancer Research Center; Alemania. Heidelberg University; Alemania
dc.description.fil
Fil: Buettner, Florian. German Cancer Research Center; Alemania. Heidelberg University; Alemania
dc.description.fil
Fil: Christodoulou, Evangelia. German Cancer Research Center; Alemania. Heidelberg University; Alemania
dc.description.fil
Fil: Glocker, Ben. German Cancer Research Center; Alemania. Heidelberg University; Alemania
dc.description.fil
Fil: Isensee, Fabian. German Cancer Research Center; Alemania
dc.description.fil
Fil: Kleesiek, Jens. German Cancer Research Center; Alemania
dc.description.fil
Fil: Kozubek, Michal. German Cancer Research Center; Alemania
dc.description.fil
Fil: Reyes, Mauricio. German Cancer Research Center; Alemania
dc.description.fil
Fil: Riegler, Michael A.. German Cancer Research Center; Alemania
dc.description.fil
Fil: Wiesenfarth, Manuel. German Cancer Research Center; Alemania
dc.description.fil
Fil: Kavur, A. Emre. German Cancer Research Center; Alemania
dc.description.fil
Fil: Sudre, Carole H.. German Cancer Research Center; Alemania
dc.description.fil
Fil: Baumgartner, Michael. German Cancer Research Center; Alemania
dc.description.fil
Fil: Eisenmann, Matthias. German Cancer Research Center; Alemania
dc.description.fil
Fil: Heckmann Nötzel, Doreen. German Cancer Research Center; Alemania
dc.description.fil
Fil: Rädsch, Tim. German Cancer Research Center; Alemania
dc.description.fil
Fil: Acion, Laura. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Cálculo; Argentina
dc.description.fil
Fil: Antonelli, Michela. German Cancer Research Center; Alemania
dc.description.fil
Fil: Arbel, Tal. German Cancer Research Center; Alemania
dc.description.fil
Fil: Bakas, Spyridon. German Cancer Research Center; Alemania
dc.description.fil
Fil: Benis, Arriel. German Cancer Research Center; Alemania
dc.description.fil
Fil: Ferrer, Luciana. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; Argentina
dc.description.fil
Fil: Tiulpin, Aleksei. German Cancer Research Center; Alemania
dc.description.fil
Fil: Tsaftaris, Sotirios A.. German Cancer Research Center; Alemania
dc.description.fil
Fil: Van Calster, Ben. German Cancer Research Center; Alemania
dc.description.fil
Fil: Varoquaux, Gaël. German Cancer Research Center; Alemania
dc.description.fil
Fil: Jäger, Paul F.. German Cancer Research Center; Alemania
dc.journal.title
Nature Methods

dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.nature.com/articles/s41592-023-02151-z
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1038/s41592-023-02151-z
Archivos asociados