Mostrar el registro sencillo del ítem

dc.contributor.author
Verdini, Roxana Andrea  
dc.contributor.author
Zorrilla, Susana  
dc.contributor.author
Rubiolo, Amelia Catalina  
dc.contributor.author
Nakai, S.  
dc.date.available
2017-10-06T19:19:05Z  
dc.date.issued
2007-12  
dc.identifier.citation
Verdini, Roxana Andrea; Zorrilla, Susana; Rubiolo, Amelia Catalina; Nakai, S.; Multivariate statistical methods for Port Salut Argentino cheese analysis based on ripening time, storage conditions, and sampling sites; Elsevier Science; Chemometrics and Intelligent Laboratory Systems; 86; 1; 12-2007; 60-67  
dc.identifier.issn
0169-7439  
dc.identifier.uri
http://hdl.handle.net/11336/26143  
dc.description.abstract
The objective of the present work was to compare multivariate statistical methods for the classification of Port Salut Argentino cheese samples based on ripening time (1, 6, 13, 27, and 56 days), storage conditions (traditionally ripened and ripened after frozen storage) and sampling sites (internal and external zones) using the contents of caseins, peptides and amino acids measured by chromatographic analysis as well as textural and physical parameters. In particular, two linear methods, principal component analysis (PCA) and principal component similarity (PCS), and a nonlinear method, the Kohonen self-organizing artificial neural network (Kohonen ANN), were compared. The two linear methods showed the same grouping of cheese samples according to ripening time, sampling site and storage condition. These methods are closely related in their mathematical basis and the similar grouping showed by both methods can be explained by the fact that the first three principal components explained 89.3% of the data set variation. The non-linear Kohonen ANN uses a mathematical procedure completely different from PCA; however, only slight differences were observed in the grouping of cheese samples. Those differences may be related to the weight that each model gives to every variable. One interesting feature of Kohonen ANN is that weight maps (contour plots) sometimes are superior to principal component loadings (vectors) for the understanding of relationships between the groups and the original variables.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier Science  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Multivariate Analysis  
dc.subject
Neural Networks  
dc.subject
Cheese Ripening  
dc.subject
Freezing  
dc.subject.classification
Alimentos y Bebidas  
dc.subject.classification
Otras Ingenierías y Tecnologías  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Multivariate statistical methods for Port Salut Argentino cheese analysis based on ripening time, storage conditions, and sampling sites  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2017-10-04T14:51:08Z  
dc.journal.volume
86  
dc.journal.number
1  
dc.journal.pagination
60-67  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Verdini, Roxana Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina. Universidad Nacional de Rosario; Argentina  
dc.description.fil
Fil: Zorrilla, Susana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina  
dc.description.fil
Fil: Rubiolo, Amelia Catalina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina  
dc.description.fil
Fil: Nakai, S.. University of British Columbia; Canadá  
dc.journal.title
Chemometrics and Intelligent Laboratory Systems  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0169743906001663  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.chemolab.2006.08.006