Mostrar el registro sencillo del ítem
dc.contributor.author
Verdini, Roxana Andrea
dc.contributor.author
Zorrilla, Susana
dc.contributor.author
Rubiolo, Amelia Catalina
dc.contributor.author
Nakai, S.
dc.date.available
2017-10-06T19:19:05Z
dc.date.issued
2007-12
dc.identifier.citation
Verdini, Roxana Andrea; Zorrilla, Susana; Rubiolo, Amelia Catalina; Nakai, S.; Multivariate statistical methods for Port Salut Argentino cheese analysis based on ripening time, storage conditions, and sampling sites; Elsevier Science; Chemometrics and Intelligent Laboratory Systems; 86; 1; 12-2007; 60-67
dc.identifier.issn
0169-7439
dc.identifier.uri
http://hdl.handle.net/11336/26143
dc.description.abstract
The objective of the present work was to compare multivariate statistical methods for the classification of Port Salut Argentino cheese samples based on ripening time (1, 6, 13, 27, and 56 days), storage conditions (traditionally ripened and ripened after frozen storage) and sampling sites (internal and external zones) using the contents of caseins, peptides and amino acids measured by chromatographic analysis as well as textural and physical parameters. In particular, two linear methods, principal component analysis (PCA) and principal component similarity (PCS), and a nonlinear method, the Kohonen self-organizing artificial neural network (Kohonen ANN), were compared. The two linear methods showed the same grouping of cheese samples according to ripening time, sampling site and storage condition. These methods are closely related in their mathematical basis and the similar grouping showed by both methods can be explained by the fact that the first three principal components explained 89.3% of the data set variation. The non-linear Kohonen ANN uses a mathematical procedure completely different from PCA; however, only slight differences were observed in the grouping of cheese samples. Those differences may be related to the weight that each model gives to every variable. One interesting feature of Kohonen ANN is that weight maps (contour plots) sometimes are superior to principal component loadings (vectors) for the understanding of relationships between the groups and the original variables.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier Science
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Multivariate Analysis
dc.subject
Neural Networks
dc.subject
Cheese Ripening
dc.subject
Freezing
dc.subject.classification
Alimentos y Bebidas
dc.subject.classification
Otras Ingenierías y Tecnologías
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS
dc.title
Multivariate statistical methods for Port Salut Argentino cheese analysis based on ripening time, storage conditions, and sampling sites
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2017-10-04T14:51:08Z
dc.journal.volume
86
dc.journal.number
1
dc.journal.pagination
60-67
dc.journal.pais
Países Bajos
dc.journal.ciudad
Amsterdam
dc.description.fil
Fil: Verdini, Roxana Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina. Universidad Nacional de Rosario; Argentina
dc.description.fil
Fil: Zorrilla, Susana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina
dc.description.fil
Fil: Rubiolo, Amelia Catalina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina
dc.description.fil
Fil: Nakai, S.. University of British Columbia; Canadá
dc.journal.title
Chemometrics and Intelligent Laboratory Systems
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0169743906001663
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.chemolab.2006.08.006
Archivos asociados