Artículo
Strong standard completeness theorems for S5-modal Łukasiewicz logics
Fecha de publicación:
03/2025
Editorial:
Elsevier Science
Revista:
Annals Of Pure And Applied Logic
ISSN:
0168-0072
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We study the S5-modal expansion of the logic based on the \L ukasiewicz t-norm. We exhibit a finitary propositional calculus and show that it is finitely strongly complete with respect to this logic. This propositional calculus is then expanded with an infinitary rule to achieve strong completeness. These results are derived from properties of monadic MV-algebras: functional representations of simple and finitely subdirectly irreducible algebras, as well as the finite embeddability property. We also show similar completeness theorems for the extension of the logic based on models with bounded universe.
Palabras clave:
MONADIC BL-ALGEBRAS
,
LOGICA DIFUSA
,
LUKASIEWICZ
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(INMABB)
Articulos de INST.DE MATEMATICA BAHIA BLANCA (I)
Articulos de INST.DE MATEMATICA BAHIA BLANCA (I)
Citación
Castaño, Diego Nicolás; Díaz Varela, José Patricio; Savoy Gonzalez, Gabriel Felix; Strong standard completeness theorems for S5-modal Łukasiewicz logics; Elsevier Science; Annals Of Pure And Applied Logic; 176; 3; 3-2025; 1-17 ; 103529
Compartir
Altmétricas