Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Generating implicit object fragment datasets for machine learning

López, Alfonso; Rueda, José Antonio; Segura, Rafael J.; Ogayar, Carlos J.; Navarro, Jose PabloIcon ; Fuertes, José M.
Fecha de publicación: 12/2024
Editorial: Pergamon-Elsevier Science Ltd
Revista: Computers & Graphics
ISSN: 0097-8493
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ciencias de la Computación

Resumen

One of the primary challenges inherent in utilizing deep learning models is the scarcity and accessibility hurdles associated with acquiring datasets of sufficient size to facilitate effective training of these networks. This is particularly significant in object detection, shape completion, and fracture assembly. Instead of scanning a large number of real-world fragments, it is possible to generate massive datasets with synthetic pieces. However, realistic fragmentation is computationally intensive in the preparation (e.g., pre-factured models) and generation. Otherwise, simpler algorithms such as Voronoi diagrams provide faster processing speeds at the expense of compromising realism. In this context, it is required to balance computational efficiency and realism. This paper introduces a GPU-based framework for the massive generation of voxelized fragments derived from high-resolution 3D models, specifically prepared for their utilization as training sets for machine learning models. This rapid pipeline enables controlling how many pieces are produced, their dispersion and the appearance of subtle effects such as erosion. We have tested our pipeline with an archaeological dataset, producing more than 1M fragmented pieces from 1,052 Iberian vessels (). Although this work primarily intends to provide pieces as implicit data represented by voxels, triangle meshes and point clouds can also be inferred from the initial implicit representation. To underscore the unparalleled benefits of CPU and GPU acceleration in generating vast datasets, we compared against a realistic fragment generator that highlights the potential of our approach, both in terms of applicability and processing time. We also demonstrate the synergies between our pipeline and realistic simulators, which frequently cannot select the number and size of resulting pieces. To this end, a deep learning model was trained over realistic fragments and our dataset, showcasing similar results.
Palabras clave: VOXEL , FRAGMENTATION , FRACTURE DATASET , VORONOI , GPU PROGRAMMING
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 3.384Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Atribución-NoComercial-SinDerivadas 2.5 Argentina (CC BY-NC-ND 2.5 AR)
Identificadores
URI: http://hdl.handle.net/11336/261276
URL: https://www.sciencedirect.com/science/article/pii/S0097849324002395
DOI: http://dx.doi.org/10.1016/j.cag.2024.104104
Colecciones
Articulos(IPCSH)
Articulos de INSTITUTO PATAGONICO DE CIENCIAS SOCIALES Y HUMANAS
Citación
López, Alfonso; Rueda, José Antonio; Segura, Rafael J.; Ogayar, Carlos J.; Navarro, Jose Pablo; et al.; Generating implicit object fragment datasets for machine learning; Pergamon-Elsevier Science Ltd; Computers & Graphics; 125; 104104; 12-2024; 1-12
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES