Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Selecting and weighting dynamical models using data-driven approaches

Le Bras, Pierre; Sévellec, Florian; Tandeo, Pierre; Ruiz, Juan JoseIcon ; Ailliot, Pierre
Fecha de publicación: 07/2024
Editorial: European Geosciences Union
Revista: Nonlinear Processes in Geophysics
e-ISSN: 1607-7946
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Investigación Climatológica

Resumen

In geosciences, multi-model ensembles are helpful to explore the robustness of a range of results. Toobtain a synthetic and improved representation of the studied dynamic system, the models are usually weighted.The simplest method, namely the model democracy, gives equal weights to all models, while more advancedapproaches base weights on agreement with available observations. Here, we focus on determining weights forvarious versions of an idealized model of the Atlantic Meridional Overturning Circulation. This is done by assessing their performance against synthetic observations (generated from one of the model versions) within a dataassimilation framework using the ensemble Kalman filter (EnKF). In contrast to traditional data assimilation, weimplement data-driven forecasts using the analog method based on catalogs of short-term trajectories. This approach allows us to efficiently emulate the model’s dynamics while keeping computational costs low. For eachmodel version, we compute a local performance metric, known as the contextual model evidence, to compareobservations and model forecasts. This metric, based on the innovation likelihood, is sensitive to differences inmodel dynamics and considers forecast and observation uncertainties. Finally, the weights are calculated usingboth model performance and model co-dependency and then evaluated on averages of long-term simulations.Results show good performance in identifying numerical simulations that best replicate observed short-termvariations. Additionally, it outperforms benchmark approaches such as strategies based on model democracy orclimatology when reconstructing missing distributions. These findings encourage the application of the proposedmethodology to more complex datasets in the future, like climate simulations.
Palabras clave: Model selection , Data assimilation , Machine learning
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 2.523Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution 2.5 Unported (CC BY 2.5)
Identificadores
URI: http://hdl.handle.net/11336/261257
URL: https://npg.copernicus.org/articles/31/303/2024/
DOI: http://dx.doi.org/10.5194/npg-31-303-2024
Colecciones
Articulos(CIMA)
Articulos de CENTRO DE INVESTIGACIONES DEL MAR Y LA ATMOSFERA
Citación
Le Bras, Pierre; Sévellec, Florian; Tandeo, Pierre; Ruiz, Juan Jose; Ailliot, Pierre; Selecting and weighting dynamical models using data-driven approaches; European Geosciences Union; Nonlinear Processes in Geophysics; 31; 3; 7-2024; 303-317
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES